• Title/Summary/Keyword: 철골 모멘트 연성골조

Search Result 26, Processing Time 0.033 seconds

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames (철골 연성 모멘트 골조의 연성계수 및 강도계수 평가)

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.793-805
    • /
    • 2004
  • The main objective of this paper is to evaluate the ductility and strength factors that are key components of the response modification factor for special steel moment-resistant frames. The ductility factors for special steel moment-resistant frames were calculated by multiplying the ductility factor for SDOF systems and the MDOF modification factors. Ductility factors were computed for elastic and perfectly plastic SDOF systems undergoing different levels of inelastic deformation and periods when subjected to a large number of recorded earthquake ground motions. Based on the results of the regression analysis, simplified expressions were proposed to compute the ductility factors. Based on previous studies, the MDOF modification factors were also proposed to account for the MDOF systems. Strength factors for special steel moment resisting frames were estimated from the results of the nonlinear static analysis. A total of 36 sample steel frames were designed to investigate the ductility and strength factors considering design parameters such as number of stories (4, 8, and 16 stories), seismic zone factors (Z = 0.075, 0.2, and 0.4), framing system (Perimeter Frames, PF and Distributed Frames, DF), and failure mechanism (Strong-Column Weak Beam, SCWB, and Weak-Column Strong-Beam, WCSB). The effects of these design parameters on the ductility and strength factors for special steel moment-resisting frames were investigated.

Evaluation of Ductility Factors for MDOF Systems in Special Steel Moment Resisting Frames (철골 연성 모멘트 골조에 대한 다자유도 시스템의 연성계수 평가)

  • Kang, Cheol-Kyu;Han, Young-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.13-22
    • /
    • 2004
  • Ductiluty factor has played an important role in seismic design as it is key component of response modification factor(R). In this stuty, ductility factors() are calculated by multiplying ductility factor for SDOF systems() and MDOF modification factors(). Ductility factors() for SDOF systems are computed from nonlinear dynamic analysis undergoing different level of displacement ductiluty demands and period when subjected to a large number of recorded earthquake ground motions. The MDOF modification factors() are proposed to account for the MDOF systems, based on previous studies. A total of 108 prototype steel frames are designed to investigate the ductility factors considering the number of stories(4, 8 and 16-stories), framing system(Perimeter Frames, PF and Distributed Frames, DF), failure mechanism(Strong-Column Weak-Beam, SCWB and Weak-Column Strong-Beam, WCSB), soil profiles(SA, SC and SE in UBC 1997) and seismic zone factors(Z=0.075, 0.2 and 0.4 in UBC 1997). It is shown that the number of stories, failure mechanisms (SCWB, WCSB), and soil profiles have great influence on the ductility factors, however, the structural system(Perimeter frames, Distributed frames), and seismic zones have no influence on the ductility factors.

Effect of Incident Angle of Wave on Floating Pontoon and Moment Resisting Frame (파랑 입사각이 장방형 플로팅 함체와 상부 골조에 미치는 효과)

  • Lee, Young-Wook;Kim, Bo-Ram
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.221-229
    • /
    • 2013
  • To find the influence of incident angle of wave on the moment of 3 storied steel moment resisting frame which is placed on the concrete rectangular pontoon, the fluid dynamic analysis is carried out, varying the period of wave from 5 to 15 second by 2 seconds. As increasing incident angle of wave to longitudinal axis, the influence of RAO-rolling is increased. The moment of longitudinal frame is increased apparently by the wave pressure when the incident angle is $0^{\circ}$. And the moment of the frame due to the wave pressure is decreased as the incident angle is increased. But the moment of frame due to acceleration caused from pitching and rolling is increased. It is shown that the increased moment when incident angle is $90^{\circ}$ is much greater than that of incident angle $0^{\circ}$.

Response Characteristics of the Steel Moment Resisting Frame According to the Stiffness Variation of Pontoo (플로팅 함체의 강성변화에 따른 철골모멘트연성골조의 응답 특성)

  • Lee, Young-Wook;Park, Jeong-Ah;Chae, Ji-Yong;Choi, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • To examine the interaction of the floating pontoon with a steel moment resisting frame, the static structural analysis is carried out, in which the pressure load are calculated from the forgoing fluid dynamic analysis, varying the period of wave from 3 to 15 second and for 3 cases of depth of pontoon, 1.5, 2.0, 2.5m. As results, it has shown that RAO-pitch has the linear relationship with the increase of moment of the frame and the curvature of pontoon is reversely proportional to the stiffness of pontoon. By synthesizing these results, an estimation method is proposed, which predicts the moment of frame of the different depth of pontoon based on the analysis result of an arbitrary depth of a floating pontoon. The estimation result shows considerably good agreement, compared with the analysis result.

Plastic Shear Hinges for the Seismic Design for Steel Building Structures (철골 건축구조물의 내진설계를 위한 소성 전단 힌지)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.25-29
    • /
    • 1990
  • 고층건축구조물의 내진설계에서는 강성, 강도와 연성사이의 균형이 적절하게 유지되어야 한다. 이 글은 철골고층건물의 대표적인 구조시스템인 모멘트 골조와 가새골조의 내진거동에 대한 이해를 넓히고자 최근 연구되어온 Panel Zone과 Link Beam의 거동에 대한 결과와 설계시 유의사항을 간략하게 소개하였다.

  • PDF

Seismic Retrofit of Reinforced Concrete Structures Using Steel Braces and Moment Frames (가새와 강골조를 이용한 저층 RC 구조물의 내진보강)

  • Huynh, Chanh Trung;Park, Kyoung-Hoon;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.509-516
    • /
    • 2010
  • In this study a seismic retrofit scheme for the reinforced concrete moment framed structures was investigated using steel bracing and moment frames. The analysis model structure is a 3-story 3-bay moment frame structure designed only for gravity load. The stress/strain concentration in brace-RC frame connection was investigated using finite element analysis. To prevent premature joint failure, steel moment frames were placed inside of middle bay of the RC frame. Two types of braces, steel braces and buckling restrained braces(BRBs), were used for retrofit, and the ductility and the strength of the structure before and after the retrofit were compared using nonlinear static and dynamic analyses. According to the analysis results, the strength and ductility of the structure retrofitted by the moment frames and braces increased significantly. The added steel frame did not contribute significantly to the increase of lateral strength mainly because the size is relatively small.

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

An Experiemetal Study for Improvement of Seismic Performance of Steel Beam-to-Column Connections (철골 보-기둥 접합부의 내진성능 개선을 위한 실험적 연구)

  • 이승준;김원기;이정웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.61-70
    • /
    • 1999
  • Cracking was observed in beam-to-column connections of many steel building frames during the 1994 Northridge and 1995 Kobe earthquakes. Thus extensive experimental researches are currently being conducted to improve the seismic performance of steel frames. A value of 0.015 radian was considered as a reasonable estimate of beam plastic rotation demand in steel moment-resisting frames subjected to severe earthquakes. The objective of this research is to develop a type of connection detail which moves the plastic hinge region in the beam away from the face of the column and can prevent cracking at the welded flange of the beam-to-column connection under seismic loading. An experimental investigation was undertaken on five beam-to-column connection specimens to study the performance of the connections with proposed details. The experiemental results showed that the flexural strength and rotational ductility of the beam connections were adequate for the seismic resistance steel frames to prevent possible cracks at the connections.

  • PDF

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.