• Title/Summary/Keyword: 철계전극

Search Result 3, Processing Time 0.017 seconds

Electrochemical Behavior of Lithium-Iron Oxide Electrode and Measurement of Chemical Diffusion Coefficient of Lithium (리튬-철계 산화물 전극의 전기화학 거동 및 리튬의 화학확산 계수 측정)

  • Lee Joung-Jun;Chong Won-Jung;Ju Jeh-Beck;Sohn Tai-Won;Cho Won-Il;Cho Byung-Won;Kim Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.139-145
    • /
    • 2001
  • Various compositions of iron oxide based materials as a cathode of lithium secondary battery have been fabricated and tested with electrochemical method. A layered form of $LiFeO_2$ was synthesized by mixing and heating the initial materials of $FeCl_3\;6H_2O,\;LiOH$ and NaOH at low temperature. The effect of changing the precursors composition was investigated. As a result, when increasing the additive amount of NaOH, the capacity of the electrode is decreased but the performance and declining rate of capacity became smaller. $LiFeO_2$ synthesized with the weight ratio of $NaOH/FeCl_3/LiOH,\;2/1/7$ showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles. Charge-discharge tests of lithium cells with $LiFeO_2$ cathode having the layer structure were performed. This cell showed the reversibility in the range of 1.5-4.5V of cell voltage. By using CPR method, chemical diffusion coefficients were measured in 1M $LiPF_6/EC/DEC$ solution. The value of chemical diffusion coefficient decreased with increasing the lithium content x, In 0.5$10^{-11}^cm^2/s$.

A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets (중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.