• Title/Summary/Keyword: 철(II)

Search Result 769, Processing Time 0.073 seconds

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

Effect of Composition on the pH and Solution Potential of Mixed Solutions of Copper and Iron Chloride (염화(鹽貨)구리와 염화철(鹽貨鐵) 혼합용액(混合溶液)의 조성(組成)이 pH와 용액전위(溶液電位)에 미치는 영향(影響))

  • Lee, Man-Seung;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2008
  • In order to simulate the leaching solution of copper sulfide ore in $FeCl_3$ solutions, synthetic solutions with composition of $FeCl_3$-$FeCl_2$-$CuCl_2$-CuCl-NaCl-HCl-$H_2O$ were prepared. The concentration of iron and copper chloride was varied from 0.1 to 1 m in synthetic solutions. The effect of composition on the mixed solution pH and potential at $25^{\circ}C$ was measured. When HCl concentration was constant, the increase of CuCl concentration increased solution pH. The increase of other solutes excluding HCl and CuCl decreased solution pH owing to the increase of the activity coefficient of hydrogen ion. A high CuCl concentration favored the redox equilibrium in the direction of Cu(I), while $FeCl_3$ had the opposite effect.

A Basic Study on the Removal of Iron Ion in Waste Water by the Precipitation Flotation Method (부선법에 의한 폐수중 철이온의 제거에 관한 기돌 연구)

  • 김형석;조동성;오재현
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1993
  • This study was carried out in order to define the effective collectors and the opitimum conditions for the removal of iron ion in waste water by flotation method. The results obtained in this study are summarized as follows. Fe(II) and Fe(III) were removed effectively at pH7 and 6 respectively by using sodium lauryl sulfate, an anionic collector. The anionic collector, aeropromotor 845, removed both Fe(II) and Fe(III) effectively in pH ranges of from 5 to 9. The cationic collector, trimetyl dodecyl ammonium chloride, removed both Fe(II) and Fe(III) effectively in pH ranges from 10 to 11 and from 4 to 10, respectively. Therefore, Fe(II) and Fe(III) could be effectively removed by forming the iron hydroxide precipitates by simple pH adjustment of the solutions above precipitation point of ferrous and ferric ion by flotation method. Then, the effective pH regulator and collector were NaOH and $Na_2CO_3$,aeropromotor 845 and trimetyl dodecyl ammonium chloride, respectively.

  • PDF

Preliminary Report for SN2011fe in M101

  • Sung, Hyun-Il;Yoon, Tae-Seog;Lee, Byeong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.45.2-45.2
    • /
    • 2012
  • We present preliminary report for spectral features of SN2011fe(type Ia) in M101 which was detected since late August of 2011.High-resolution spectra were obtained with BOES at the 1.8m telescope in BOAO.A number of Ca II, SiII, SII, OI, MgII, and FeII components are detected at different epochs and evolved.

  • PDF

Preparation of High Spin Five-Coordinate Iron(II) Complexes of 1,4,8,11-Tetraazacyclotetradecane and High Spin Six-Coordinate Iron(II) Complexes of 1,5,8,12-Tetraazadodecane (1,4,8,11-테트라아자사이클로테트라데칸의 높은 스핀 다섯배위철(II) 착화합물과 1,5,8,12-테트라아자도데칸의 높은 스핀 여섯배위철(II) 착화합물의 합성)

  • Myunghyun Paik Suh
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 1980
  • High spin iron(II) complexes of 1,4,8,11-tetraazacyclotetradecane (cyclam), a macrocyclic ligand, and 1,5,8,12-tetraazadodecane (3,2,3-tet), a noncyclic ligand, have been prepared. The reaction of low spin $[Fe(cyclam)(CH_3CN)_2](ClO_4)_2$ with chloride ion in methanol produces high-spin $[Fe(cyclam)Cl]ClO_4$. Although $[Fe(cyclam)(CH_3CN)_2](ClO_4)_2$ is low spin, $[Fe(3,2,3-tet)(CH_3CN)_2](ClO_4)_2$ isolated in the present study is high spin. This difference is explained in terms of the smaller constrictive effect exerted by the noncyclic ligand than the cyclic ligand. The isolation of $[Fe(cyclam)Cl]ClO_4$ provides evidences against the current view that the presence of either unsaturation or substituents on the macrocyclic ligands is necessary for the successful preparation of high spin five-coordinate iron (II) complexes. Reactions of $[Fe(cyclam)Cl]ClO_4\;and\;[Fe(3,2,3-tet)(CH_3CN)_2](ClO_4)_2$ with carbon monoxide yield low spin six-coordinate $[Fe(cyclam)Cl(CO)]ClO_4\;and\;[Fe(3.2,3-tet)(CH_3CN)(CO)](ClO_4)_2$, respectively.

  • PDF

Evaluation of the Removal Properties of Cu(II) by Fe-Impregnated Activated Carbon Prepared at Different pH (pH를 달리하여 제조한 3가철 첨착 활성탄에 의한 구리 제거특성 평가)

  • Yang, Jae-Kyu;Lee, Nam-Hee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.345-351
    • /
    • 2008
  • Fe-impregnated activated carbon(Fe-AC) was prepared by Fe(III) loading on activated carbon(AC) in various preparation pH. In order to evaluate the stability of Fe-AC, dissolution of iron from Fe-AC in acidic conditions was measured. In addition, batch experiments were conducted to monitor the removal efficiency of copper by Fe-AC. Results of stability test for Fe-AC showed that the amount of extracted iron increased with contact time but decreased with increasing solution pH. The dissolved amount of iron gradually increased at solution pH 2 and finally 13% of the total iron loaded on activated carbon was extracted after 12 hr. However dissolution of iron was negligible over solution pH 3. Removal of Cu(II) by Fe-AC was greatly affected by solution pH and was decreased as solution pH increased as well as initial Cu(II) concentration decreased. Surface complexation modeling was performed by considering inner-sphere complexation reaction and using the diffuse layer model with MINTEQA2 program.