• 제목/요약/키워드: 천정 건조 지연 모델

검색결과 2건 처리시간 0.016초

GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석 (Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models)

  • 남진용;송동섭
    • 한국측량학회지
    • /
    • 제37권4호
    • /
    • pp.233-242
    • /
    • 2019
  • GNSS를 이용한 가강수량 복원에 있어서 가중 평균 기온과 더불어 천정 건조 지연 모델은 가강수량의 정확도에 중요한 매개변수 중 하나이다. 천정 습윤 지연은 천정 건조 지연 모델의 오차가 축적되는 경향을 가지고 있으므로, 천정 건조 지연의 편의량은 GNSS 가강수량의 정확도에 영향을 미치게 된다. 본 연구에서는 Saastamoinen, Hopfield 및 Black의 세 가지 천정 건조 지연 모델을 이용하여 GNSS 가강수량을 산출하고 라디오존데 가강수량과의 정확도를 비교하였다. 그리고 이 과정에서 가강수량 산출에 필요한 가중 평균 기온을 한국형 가중 평균 기온 모델과 라디오존데로부터 실제로 관측한 가중 평균 기온을 각각 적용하여 다르게 평가하였다. 이를 위해 국내 상시관측소 5개소의 1년 분량의 GNSS 관측데이터를 취득한 후 천정 건조 지연 모델별로 가강수량을 산출하고 정밀도를 분석하였다. 분석 결과, 한국형 가중 평균 기온 모델에 기반하여 복원한 GNSS 가강수량이 라디오존데의 가중 평균 기온을 적용한 것보다 편의량이 작은 것으로 확인되었다. 또한, GNSS 기상에서 널리 적용하고 있는 Saastamoinen 모델은 우리나라 관측소의 위도나 고도에 의한 편의량이 발생하여 가장 유효한 모델이 아닐 가능성이 있음을 확인하였다.

딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구 (Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning)

  • 임수현;배태석
    • 한국측량학회지
    • /
    • 제39권1호
    • /
    • pp.23-28
    • /
    • 2021
  • 최근 딥러닝을 활용한 데이터 분석 연구가 다양한 분야에서 진행되고 있다. 본 논문에서는 딥러닝 모델인 MLP (Multi-Layer Perceptron)와 LSTM (Long Short-Term Memory) 모델을 통해 ZWD (Zenith tropospheric Wet Delay)을 추정함으로써 딥러닝을 활용한 GNSS (Global Navigation Satellite System) 기반 기상 연구를 수행하였다. 딥러닝 모델은 기상 데이터와 천정방향 대류권 총 지연, 건조지연을 통해 추정한 ZWD로 학습되었고, 학습에 사용되지 않은 기상 데이터를 학습된 모델에 적용하여 두 모델에서 센티미터 수준의 RMSE (Root Mean Square Error)로 ZWD 결과를 산출하였다. 추후 해안지역의 GNSS 데이터를 함께 사용하고 시간 해상도를 높여 다양한 상황에서도 ZWD가 추정될 수 있도록 추가적인 연구가 수행될 필요가 있다.