• Title/Summary/Keyword: 천연 단열재

Search Result 17, Processing Time 0.031 seconds

Improvement of Insulation System for LNG Storage Tank Base Slab (LNG 저장탱크 바닥판 단열 시스템 개선)

  • Lee, Yong-Jin;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.141-147
    • /
    • 2010
  • Liquefied natural gas(LNG) is natural gas that has been converted temporarily to liquid form for ease of storage and transport it. Natural gas is the worlds cleanest burning fossil fuel and it has emerged as the environmentally preferred fuel of choice. In Korea, the demand of this has been increased since the first import from the Indonesia in 1986. LNG takes up about 1/600th the volume of natural gas in the gaseous state by cooling it to approximately $-162^{\circ}C(-260^{\circ}F)$. The reduction in volume therefore makes it much more cost efficient to transport and store it. Modern LNG storage tanks are typically the full containment type, which is a double-wall construction with reinforced concrete outer wall and a high-nickel steel inner tank, with extremely efficient insulation between the walls. The insulation will be installed to LNG outer tank for the isolation of cryogenic temperature. The insulation will be installed in the base slab, wall and at the roof. According to the insulation's arrangement, the different aspects of temperature transmission is shown around the outer tank. As the result of the thermal & stress analysis, by the installing cellular glass underneath the perlite concrete, the temperature difference is greatly reduced between the ambient temperature and inside of concrete wall, also reducing section force according to temperature load.

Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material (천연섬유질을 심재로 사용한 친환경 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • For the development of the environment-friendly insulating composite materials, natural cellulose (wood chip and sawdust) was used as a core material and activated Hwangtoh was used as a binder. Various specimens were prepared with the water/binder ratio and natural cellulose/binder ratio. The physical properties of these specimens were then investigated through compressive and flexural strength test, absorption test, hot water resistance test, thermal conductivity, measurement of pore distribution and observation of micro-structures using scanning electron microscope (SEM). Results showed that the absorption ratio increased with the increase of natural cellulose/binder ratio but decreased remarkably with the increase of polymer/binder ratio. The compressive and flexural strength development varied appreciably with the increase of water/binder ratio and natural cellulose/binder ratio. On the other hand, thermal conductivity decreased with the increase of natural cellulose/binder ratio and polymer/binder ratio. Through SEM, it was found that activated Hwangtoh that reacted with water formed a hydrate crystal leading to the compact structure and the total pore volume of the specimen using activated Hwangtoh was smaller than that of the non-activated Hwangtoh.

전기로 슬래그를 이용한 암면 제조기술개발

  • 강기홍;고인용
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05a
    • /
    • pp.409-411
    • /
    • 2001
  • (주)서울암면은 현무암, 안산암, 백운석등의 천연원료를 사용하는 기존 공정 대신에 제철소에서 발생하는 고로슬래그를 주원료로 이용하는 공정으로 암면을 제조하고 있다. 본 연구에서는 재활용율이 낮은 산업부산물인 전기로 슬래그, 폐주물사, 알루미늄 드로스 둥을 암면원료로 대체사용하는 기술을 개발하고자 하였다. 시험생산은 전기로슬래그와 석탄을 분체로 혼합한 브리켓트를 만들어, 기존원료의 많은 부분을 대체하여 큐폴라로에 장입하여 생산하였으며 폐주물사, 알루미늄 드로스 등의 첨가율도 조절하였다. 생산된 암면 제품은 한국공업규격인 KS F4701 암면 단열재 시험법에 규정된 규격을 만족하였다.

  • PDF

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).

A Computer Programme Development for Thermal-Hydraulic Analysis and Optimal Design on LNG Pipeline System (LMG 배관시스템의 열유동 해석 및 최적설계 프로그램 개발)

  • Lee Sanggyu;Hong Seong-Ho;Lee Joong-Nam;Park Seok-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.7-14
    • /
    • 2000
  • LNG (Liquified Natural Gas) carried by LNG ship is unloaded into the LNG storage tanks at the very low temperature (a little lower than the boiling point of LNG). Because LNG is unloaded through the pipeline, two phase flow appears in the pipeline. In this study, we have studied the pressure-drop mechanisms of the two-phase flow in the pipeline, and the calculation method of BOG (Boil-off Gas) amount based on the heat transfer mechanism through the insulation and the surface of the pipeline. We have developed a computer program for thermal-hydraulic analysis on the LNG pipeline system. We have also developed the optimal design program to find the optimal thickness of insulation and the pipeline size. The program searches the optimal design with the minimum capital cost of pipelines and insulation on the operating conditions of maximum allowance pressure-drop and BOG amount, etc.

  • PDF

Development and Commercialization of Warm Covers Using Natural Fabric (천연 소재를 이용한 보온덮개 개발 및 사업화 방안)

  • Choi, Ju-Hyun;Beak, Hyun-Kuk;Cho, Yun-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.227-233
    • /
    • 2018
  • The purpose of this study was to develop a warm cover for greenhouse with excellent thermal insulation and to propose ways of commercialization of the product. Feathers were used as filling materials because they formed the air layer to enhance insulation. Instead of downs for clothing or other textile products, we used disposed feathers. The developed product covers the outside of the greenhouse to keep the crops warm. It has multiple layers including feathers as filling materials, padding, inside fabric, heat insulation materials and outer fabric. It has proven to improve the insulation ratio. We developed other kinds of warm covers that are applicable to the inside of the greenhouse or the small houses in the greenhouse. Also, R&D system of educational industrial complex enables us to commercialize the products and building marketing strategies for them. This technology contributes to the expansion of energy-saving facilities for farmers, and it can serve the development and spread of various products utilizing feather.

A Study on the Thermal Design of the Cryogenic LNG Carrier (초저온 LNG선의 열설계에 관한 연구)

  • 김용모;고상철;천병일;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 1993
  • This paper introduces the outline of hull structure to the sorts of LNG carrier briefly. Especially, explains in detail for the insulation system of Moss Rosenberg Verft spherical tank type LNG carrier. It is not easy task to calculate exactly the temperature distribution of hull because of very complicated structure of hull. Therefore, in this paper by the adequate modeling of the Moss Rosengerg spherical tank type LNG carrier, a program is developed which calculate the temperature distribution of every hull and estimate the heat influx from every hull and output the BOR according to the variation of atmospheric conditions on boyage.

  • PDF

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor (등온반응기와 단열반응기 조합으로 구성된 0.25 MW급 메탄합성 파일롯 공정 운전특성)

  • Kim, Suhyun;Yoo, Youngdon;Kang, Sukhwan;Ryu, Jaehong;Kim, Jinho;Kim, Munhyun;Koh, Dongjun;Lee, Hyunjung;Kim, Gwangjun;Kim, Hyungtaek
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.156-164
    • /
    • 2013
  • In this study, we analyzed the operational characteristics of a 0.25 MW methanation pilot plant. Isothermal reactor controled the heat released from methanation reaction by saturated water in shell side. Methanation process consisting of isothermal reactor and adiabatic reactor had advantages with no recycle compressor and more less reactors compared with methanation process with only adiabatic reactors. In case that $H_2$/CO ratio of syngas was under 3, carbon deposition occurred on catalyst in tube side of isothermal reactor and the pressure of reactors increased. In case that $H_2$/CO ratio was maintained around 3, no carbon deposition on catalyst in tube side of isothermal reactor was found by monitoring the differential pressure of reactors and by measuring the differential pressure of several of tubes filled with catalyst before and after operating. It was shown that CO conversion and $CH_4$selectivity were over 99, 97%, respectively, and the maximum $CH_4$productivity was $695ml/h{\cdot}g-cat$.

Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas(SNG) Synthetic Systems (1 $Nm^3/h$ 규모 합성천연가스(SNG) 합성 시스템의 운전 특성)

  • Kim, Jin-Ho;Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Sun-Ki;Kim, Su-Hyun;Kim, Mun-Hyun;Lee, Do-Yeon;Yoo, Yong-Don;Byun, Chang-Dae;Lim, Hyo-Jun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.491-497
    • /
    • 2011
  • In this work, we proposed the three different reactor systems for evaluating of synthetic natural gas(SNG) processes using the synthesis gas consisting of CO and $H_2$ and reactor systems to be considered are series adiabatic reaction system, series adiabatic reaction system with the recirculation and cooling wall type reaction system. The maximum temperature of the first adiabatic reactor in series adiabatic reaction system raised to 800. From the these results, carbon dioxide in product gas as compared to other systems was increased more than that expected due to water gas shift reaction(WGSR) and the maximum $CH_4$ concentration in SNG was 90.1%. In series adiabatic reaction system with the recirculation as a way to decrease the temperature in catalyst bed, the maximum $CH_4$ concentration in SNG was 96.3%. In cooling wall type reaction system, the reaction heat is absorbed by boiling water in the shell and the reaction temperature is controlled by controlling the amount of flow rate and pressure of feed water. The maximum $CH_4$ concentration in SNG for cooling wall type reaction system was 97.9%. The main advantage of the cooling wall type reaction system over adiabatic systems is that potentially it can be achieve almost complete methanation in one reactor.