• Title/Summary/Keyword: 천연 가스

Search Result 1,439, Processing Time 0.031 seconds

$^{13}C$ NMR study on kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture ($^{13}C$ NMR을 이용한 질소 및 이산화탄소 혼합 가스의 메탄 하이드레이트 치환 속도 규명 연구)

  • Seo, Yu-Taek;Moudrakovski, Igor L.;Ripmeester, John A.;Kang, Seong-Pil;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.591-594
    • /
    • 2008
  • 지구 온난화 문제의 심각성이 대두되면서 이산화탄소 저감 기술에 대한 관심이 증폭되고 있다. 가장 이상적인 방법은 탄소가 포함되지 않은 청정 재생 에너지원이지만, 에너지 공급 규모 면에서 보면 근미래에도 화석 연료가 에너지 수요에 대한 주요 공급원으로 남아있을 것이라는 의견이 지배적이다. 많은 화석 연료 중 천연가스는 탄소 배출량이 가장 적은 청정 연료로 지난 10년간 수요가 폭발적으로 증가해왔다. 이를 고려해볼 때 탄소 배출량이 적은 천연가스를 생산하면서 이산화탄소를 격리 시킬 수 있는 기술은 매우 매력적이다. 본 연구에서는 심해저의 메탄 하이드레이트로 부터 천연가스를 생산하는 기술로서 이산화탄소와 질소의 혼합 가스를 사용하는 기술 개발의 일환으로 혼합 가스에 의한 메탄 하이드레이트 해리 속도를 $^{13}C$ NMR을 이용해 측정한 결과를 제시하고자 한다.

  • PDF

Present Status and Prospect of LNG Strorage Tank (액화천연가스 저장탱크의 현황 및 전망)

  • 홍성호
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.1-7
    • /
    • 1995
  • 1992년 9월 현재 전 세계적으로 운전 중(건설포함)인 액화 및 인수기지의 LNG 저장탱크는 지상식-이중벽 금속 탱크, 지상식-맴브레인 PC 탱크, 지상식-자립식 내부탱크/PC 외부탱크, 피드식-RC(Reinforced Concrete) 보강둑 탱크, 피트식-이중벽 금속탱크, 피트식-자립식 내부탱크/PC 외부탱크 및 지하식 탱크의 7가지 유형으로 나 타낼 수 있다. 또한 액화천연가스를 저장하는 내부탱크 소재에 따라 9%Ni강 및 MEMBRANE(SUS304) 형식으로 대별할 수 있다. MEMBRANE 저장탱크 형식의 핵심기술인 MEMBRANE은 -162.deg.C의 LNG에 의한 열수축팽창에 견딜 수 있도록 스테인레스강판 (SUS304)을 사용하여 기하학적으로 특이한 주름진 형상을 갖도록 설계되었으며 주름 형상에 따라 프랑스의 테크니가즈(Technigaz), 일본의 가와사끼(Kawasaki). 미쓰비시 (Mitsubishi), 이시가와지마하리마(Ishikawajima-Harima)사의 멤브레인과 세계에서 3번째로 한국가스공사 연구개발원이 개발한 링디식 멤브레인으로 구별할 수 있다. 본 해설에서는 국내의 전국 천연가스 공급사업계획 및 건설현황을 검토하고 최근 전 세계적으로 널리 사용되고 있는 액화천연가스 저장탱크의 종류를 용량별, 년도별로 분석하여 전세계의 액화천연가스 저장탱크에 관해 소개 하겠다.

  • PDF

INTERVIEW_인물탐방 - 이창수 한국기술사회 가스분회장

  • 한국기술사회
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.3
    • /
    • pp.8-9
    • /
    • 2010
  • 가스산업은 해외플랜트 수출을 비롯해 천연가스 도입을 통한 가스의 안정적인 공급 기반 활동, 대체 천연가스 수요처 다변화, 바이오가스 등의 새로운 패러다임이 제시되고 있다. 가스기술사회 이창수 분회장을 만나 가스기술사회의 비전과 역량에 대해 들어보았다.

  • PDF

Thermodynamic and Spectroscopic Analysis of Natural Gas Hydrates Including TBAB and TBAF (TBAB와 TBAF를 포함하는 천연가스 하이드레이트의 열역학적 및 분광학적 분석)

  • Lee, Youngjun;Lee, Seungmin;Park, Sungmin;Heo, Jaehyeok;Seo, Yongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.149.2-149.2
    • /
    • 2010
  • 본 연구에서는 하이드레이트 형성시 촉진효과를 갖는 것으로 보고되고 있는 TBAB, TBAF를 첨가한 천연가스 하이드레이트의 열역학적 특성 분석과 $^{13}C$ NMR을 통한 구조 및 동공점유에 관한 분석을 하였다. 천연가스 혼합기체 ($CH_4$ (90%) + $C_2H_6$ (7%) + $C_3H_8$ (3%))에 10, 40, 60 wt%의 TBAB 또는 10, 34, 45 wt%의 TBAF 용액을 첨가하여 하이드레이트(H) - 물(Lw) - 기상(V)의 3상 평형을 측정하였다. 3상 평형 측정결과 순수한 천연가스 하이드레이트보다 평형조건이 더 낮은 압력과 더 높은 온도영역에서 나타났다. 특히 양론비에 해당하는 TBAB 40 wt%, TBAF 34 wt%의 농도에서 가장 뛰어난 촉진효과가 나타났으며 그 이상의 농도에서는 촉진효과가 이전보다 저하되는 것을 알 수 있었다. $^{13}C$ NMR 분석 결과 천연가스 + TBAB (또는 TBAF) 하이드레이트의 격자에는 TBAB (또는 TBAF)와 $CH_4$만이 포집되어 있으며 $CH_4$이 포집되어 있는 동공이 순수한 $CH_4$ 하이드레이트의 작은 동공과 유사하다는 것을 알 수 있었다. 이상의 결과를 통하여 TBAB 또는 TBAF가 천연가스 하이드레이트의 열역학적 촉진제로 뛰어난 효과를 나타내었으며, 또한, 혼합 기체의 분리 연구에도 적용될 수 있음을 확인하였다.

  • PDF

A Study on Boiling Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 비등특성 연구)

  • 김남진;김종보
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.420-428
    • /
    • 1995
  • 현재 사용하고 있는 액화천연가스 기화기는 관내부로 -162$^{\circ}C$의 액화가스가 흐르고, 관외부로 발전소 증기응축기 출구에서 배출된 20~3$0^{\circ}C$의 해수를 흐르도록 하여, 두 유체사이의 온도차로 기화시키는 간접접촉방식 열교환기가 사용되고 있다. 그러나 간접접촉방식 열교환기는 두 유체사이의 큰 온도차로 인한 금속재료의 피로현상과 해수의 염분에 의한 재질의 부식 및 미생물 부착 등의 원인으로 열전달효율이 저하되고 있다. 따라서 본 연구는 관을 중간매체로 하는 간접접촉식 열교환기대신 액화천연가스와 기화용수인 물을 직접접촉시키는 방법으로 이용하여, 위와 같은 문제점들을 근본적으로 해결하려 한다. 본 실험에서는 기화기내의 수위 500 mm와 물의 유량 10 l/min을 일정하게 고정시키고, 액화천연가스의 유량 0.12 ㅣ/min, 0.36 l/min, 0.6 l/min, 기화기내의 압력을 100 kPa, 300 kPa, 500kPa로 변화시키면서 기화기내의 기포, 온도분포, 급팽창현상, 동결현상 및 기화후 수분함유량등의 비등특성을 규명하였다. 실험결과 기화기내의 압력이 증가할수록 기포는 작고 균일한 분포를 이루고, 폭발적인 급팽창현상은 일어나지 않았다. 또한 동결현상은 액화천연가스의 기화를 방지하지 못하였으며, 기화된 천연가스내의 수분함유량 몰%는 압력과 유량이 증가함에 따라 감소하는 경향을 보이고 있다.

  • PDF

Development of Business Process Model for Overseas Natural Gas Pipeline Project at the Project Planning Phase (해외 천연가스 파이프라인 사업 진출을 위한 사업계획단계 의사결정 프로세스 모델 구축)

  • Sin, Eonill;Han, Seung-Heon;Jang, Woosik;Lee, Yong-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.473-481
    • /
    • 2012
  • Demand of Natural Gas (NG) consumption is continuously increasing by long service life and low environmental impact than other fossil fuels. Because of this reasons, Gas wells exploration and huge LNG plant construction project are being boosted world-widely. Especially, overseas NG pipe-line projects are emerging by considering safe and efficiency at the inter-country sections. At the same time, Korean contractors are being achieved to record-breaking performance at 2011's overseas construction market and 80% of new-record was attained from overseas plant construction projects. Nevertheless, Korean contractors are behind than overseas leading contractors by geographical distance from gas wells and concentrated demand for storage plant. In these reasons, this paper aims to develop the standardized business process model(BPM) for overseas NG pipe-line project at project planning phase to support the project entry. To this aim, first of all, extract the BPM through the broad literature and overseas construction market review and domestic/overseas pipe-line project analysis. Second, Test-bed was performed to confirm of practical applicability by 4 experts. And then 15 experts survey were performed to validate the usability and effectiveness of BPM for overseas NG pipe-line project. Consequently, if Korean contractors are using this BPM with their own know-how and experiences, it will be returned to more reasonable and rational references for decision making in overseas NG pipe-line project.

천연가스 이야기

  • 김용웅
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.9
    • /
    • pp.27-30
    • /
    • 2002
  • PDF

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.

A Model of Location Decisions of Natural Gas Filling Station Considering Spatial Coverage and Travel Cost (공간적 접근성 및 통행비용을 고려한 천연가스 충전소 최적 입지선정 모형)

  • Yu, Jeong-Whon;Lee, Mu-Young;Oh, Sei-Chang
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.145-153
    • /
    • 2008
  • This study proposes a facility location model in consideration of spatial coverage and travel cost as an effort to make objective and effective decisions of natural gas filling stations. The proposed model is developed for fixed stations and consists of two stages. The first stage employs a heuristic algorithm to find a set of locations which satisfy the spatial coverage constraints determined by the maximum travel distance between the filling stations and bus depots. In the second stage, the optimal location of filling stations is determined based on the minimum travel cost estimated by using a modified transportation problem as well as the construction and maintenance costs of the filling stations. The applicability of the model is analyzed through finding the optimal location of filling stations for the city of Anyang, a typical medium-sized city in metropolitan Seoul, based on the demand of natural gas buses. This study is expected to help promote the spread of natural gas buses by providing a starting point of a objective and reasonable methodological perspective to address the filling station location problem.

SNG Production characteristics of various coal type and gasifier (석탄 종류 및 가스화기 종류별 SNG 생산 특성)

  • Kim, Suhyun;Yoo, Youngdon;Kim, Jinho;Koh, Dongjun;Baik, Joonhyun;Byun, Changdae;Lim, Hyojun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.72-72
    • /
    • 2011
  • 국내 및 세계의 천연가스 수요가 증가하고, 원유가 상승에 의한 천연가스의 지속적인 가격상승이 예측됨에 따라 천연가스의 99%를 수입에 의존하는 우리나라의 에너지 안보 확보 방안을 위한 기술개발이 필요하다. 국내에서 천연가스를 확보할 수 있는 현실적인 방법중의 하나는 석탄가스화를 통해 얻어진 합성가스를 이용하여 SNG(synthetic Natural Gas, 합성천연가스)를 제조하는 것이다. 본 연구에서는 다양한 석탄, 다양한 석탄 가스화기를 적용하는 경우에 대한 CASE별 공정해석을 수행하여 각 경우의 SNG 생산 특성을 파악하였다. 석탄의 종류는 역청탄, 아역청탄, 갈탄을 대상으로 하였으며, 역청탄을 사용하는 경우는 General Electric Energy(GEE), Shell Global Solutions(Shell), ConocoPhillips(CoP)사의 가스화기를, 아역청탄을 사용하는 경우는 KBR의 TRIG$^{TM}$, Siemens사의 SFG, Shell, CoP 가스화기를, 갈탄을 사용하는 경우는 Shell, Siemens 가스화기를 적용하였다. 사용한 석탄과 석탄가스화기에서 발생된 합성가스 조성은 NETL에서 발행된 보고서에 제시된 수치들을 활용하였다. 역청탄을 사용하고 CoP 가스화기를 적용한 경우, SNG 합성공정에 유입되는 유량이 100 Nm3/h 일 때, 생산되는 SNG의 조성은 $CH_4$ 96.26%, $H_2$ 1.49%, $CO_2$ 0.69%, CO 0.004% 이고 생산유량은 24 Nm3/h 였다. SNG 효율을 SNG 합성공정에 공급되는 합성가스 열량 대비 최종 생산되는 SNG의 열량을 기준으로 하고, 각 CASE 별 SNG 효율을 살펴보면, 역청탄을 대상으로 한 경우 GEE 74.05%, CoP 76.65%였다. 아역청탄을 대상으로 한 경우 TRIG 78.14%, Siemens 71.22%, CoP 75.72%였고, 갈탄을 대상으로 하는 경우 Shell 71.48%, Siemens 71.49%였다. 역청탄을 사용하는 경우는 CoP 가스화기를 대상으로 한 경우 SNG 효율 및 생산량이 가장 높았고, 아역청탄을 사용하는 경우는 TRIG 가스화기를 대상으로 한 경우의 SNG 효율 및 생산량이 높았다. 갈탄을 사용하는 경우는 Shell 가스화기와 Siemens 가스화기가 거의 비슷한 결과를 나타내었다. $$SNG\;efficiency({\eta})={\frac{Q_B}{Q_A}}={\frac{Q_{SNG}(kcal/h)}{Q_{Syngas}(kcal/h)}}{\times}100(%)$$.

  • PDF