• Title/Summary/Keyword: 천매암

Search Result 38, Processing Time 0.032 seconds

Rare Earth Element Contents of the Ginsengs and their Soils, Keumsan area (금산 인삼과 토양의 희토류 원소 함량관계)

  • Song, Suck-Hwan;Min, Ell-Sik;Yoo, Sun-Kyun;Lee, Yong-Gyoo
    • Journal of Ginseng Research
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • Ginsengs(1-3 years old) from the Keumsan were analysed for the rare earth element(REE) contents and compared with their soils from the biotite granite(CR), phyllite(PH) and shale(SL) areas. In the soils, high REE contents and correlations were found in the SL. In the ginsengs, high element contents were shown in the SL. High correlations were found in the 3 year. In the upper parts, the 2 year of the GR was mainly high. Comparing with the same aged ginsengs, high elements were shown in the SL. Positive correlations were dominated and high correlations were shown in the 3 year ginsengs. In the root parts, the GR was high in the 2 year while the PH and SL were high in the 3 year. Comparing with the same ages, high elements were shown in the SL. High correlation relationships were found. Comparing between upper and root parts, the upper parts were mainly high, LREE showed big differences and relative ratios of the 2 year were mainly high. Comparing between soils and ginsengs, the soils were mainly high. Ratios between soils and root parts(soils/root parts) were higher than those of the upper parts. Ratios of the LREE showed big differences relative to those in the HREE and the ratios increased with ages. Overall results suggested that ginsengs of the SL were similar to those of soils and those of the PH showed big differences.

Comparisons of Inorganic Compounds between the Ginsengs, Keumsan, Chungnam and their Soils (충남 금산의 인삼 및 토양의 무기 원소 함량 비교)

  • Song, Suck-Hwan;You, Seon-Gyun;Kim, Ill-Chool
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 2007
  • Ginsengs (1,2 3 years) from the Keumsan are analysed for the inorganic compounds and compared with the their soils from the granite, phyllite and shale areas. In the soils, the granite areas show high $Al_2O_3\;and\;Na_2O$ contents while the phyllite areas have high $Fe_2O_3,\;MnO\;and\;MgO$ contents. Positive correlations are shown in the $Al_2O_3-K_2O\;and\;Fe_2O_3-MgO$ pairs while negative correlations are shown in the $SiO_2-CaO$ pair. In the ginsengs, the shale areas are high in the most of the elements, but low in the granite areas. Compared with same soils of different ages, Al, Na and Ti contents of the ginsengs are high in the all areas. The shale areas are mainly high in the upper parts while the granite areas are mainly high in the root parts. Regardless of the localities, Fe, Mn and Ca contents are high in the upper parts while Ti contents are high in the root parts with differences of several times. Relative ratios between field soils and ginsengs (field soil/ginseng) suggest that the ginsengs show high Ca contents with differences of several ten times whereas the soils have high Na, Fe, Ti and Al contents with differences of several times. Regardless of the localities, the ratios of the Al, Mn and Na are high in the 2 year relative to the 3 year. Overall ratios between field soils and ginsengs are mainly big in the 2 year area relative to the 3 year area. It suggests that contents of the 3 year ginsengs are more similar to those of their soils relative to the 2 year and the ginsengs may absorpt eligible element contents with increasing ages.

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

Characteristics of the Incompatible Element Contents of the Ginsengs from Keumsan (금산 지역 인삼의 비호정성 원소 함량 특성)

  • Song, Suck-Hwan;Yoo, Sun-Kyun;Min, Ell-Sik
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.137-152
    • /
    • 2006
  • This study is for chemical relationships between ginsengs(2, 3 and 4 yr) and soils from three representative soil types of Keumsan, shale(SL), phyllite(PH) and granite(GR). In the weathered soils, the GR is mainly high. Positive relationships are dominant, and negative correlations are shown in the Y-Nb and Nb-Ta pairs. In the field soils, the GR is high while the SL is low. Regardless of the localities, available correlation relationships are dominant in the GR, and dominant in the 3 year area. In the host rocks, high element contents are shown in the GR. Positive relationships, regardless of the localities, are shown in the Zr-Hf, Ta, Nb-Ta and Hf-Ta pairs. In the ginsengs, chemical contents are distinctive with the different ages. Positive relationships are shown in the Y-Nb pair of the SL, Rb-Y pair of the PH, and Rb-Sr pair of the GR. Relative ratios(GR/SL and GR/PH) of the ginsengs suggest that ginsengs from the GR are higher than those of SL and PH while in the comparisons between PH and SL, 2 year ginsengs are high in the SL and 4 year ginsengs are high in the PH. Relative ratios between weathered and field soils (weathered/field) suggest high element contents in the weathered soils from the SL and PH and in the relative ratios(weathered soil/host rock), high element contents in weathered soils. Relative ratios between field soils and ginsengs(field soil/ginseng), regardless of the ages, show several ten and hundred times, suggestive of high contents in the soils. Comparisons with the overall average contents of each area show differences of several ten to hundred times in the SL and PH, and of several to ten times in the GR. These relationships suggest that contents of the ginsengs from the GR are more similar to the soils relative to those of SL and PH.

Comparisons of the major element contents for the Korean ginsengs from various soils of Keumsan (금산의 다양한 토양으로부터 채취된 고려 인삼의 주 원소 함량 비교)

  • Song, Suck-Hwan;Min, Ell-Sik;Chang, Gyu-Sick
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.194-209
    • /
    • 2008
  • This study is for major element relationships between ginsengs and soils from three representative soil types from Keumsan, shale, phyllite and granite. In the weathered soils, the granite and phylllite are high while the shale are low. The granite show distinctive positive and negative relationships rather than the phyllite and shale. In the field soils, the granite and phyllite are high while the shale are low. Positive relationships are distinctive with the increasing ages, and in the granite. In the ginsengs, high element contents are shown in K and Na of the shale, Mg and Ca of the phyllite, and Al, Mn and Ti of the granite. In the same regions, the 2 and 3 years are mainly low, but high in the 4 year. Positive correlations are distinctive in the 2 and 4 year of the shale, and 3 year of the granite. Comparisons with ginsengs of the same ages from the different areas suggest that the granite show high element contents with the ages. It also suggests that the 2 year of the granite, and 3 and 4 year of the shale and phyllite are high. Relative ratios(weathered/field soils) among the soils suggest that the weathered are generally high, especially in the granite rather than the shale. Relative ratios between field soils and ginsengs(field soils/ginseng) suggest that the soils are higher than the ginsengs, and differences of several hundred times in the Al and Ti, and of several ten times in the Mn are shown between two. Comparisons among the different ages from the same areas suggest that differences of several hundred times in the Al and Ti are shown. It suggests that ginseng contents are significantly different from the field soils in the Al and Ti contents. Comparisons among from the same ages of the different areas suggest that high element differences are shown in Na of the shale, and Mn of the phyllite, while low element differences are found in Mg of the shale, and Al, Mn, and Na of the granite.

Effect of Different Seed Coating Materials on Seedling Establishment and Growth in Direct Seeded Rice under Puddled Wet Soil Condition (벼 무논직파재배의 종자 코팅소재별 발아 및 유묘생육 특성)

  • Park, K.H;Kim, Y.S.;Chang, J.T.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • The research was conducted to determine a seed germination and seedling establishment of rice plant under seed coating materials such as iron, silicate, and phyllite and under covered with silicate and iron coated & silicate covered in the puddled wet hill seeding and wet line seeding methods. The seedling establishment was high in silicate and untreated control of 100%>phyllite coating of 91.5%>silicate coating of 88%>iron coating and silicate covered of 86%>silicate covered of 75.5% in the puddled wet hill seeding method, respectively. At 35days after treatment there was high in seedling height at silicate covered of 23.8cm>control of 23.6cm>silicate coating of 21.4cm>phyllite coating of 20.2cm>iron coating and silicate covered of 16.8cm>iron coating of 15.4cm. In puddle wet line seeding method rice seedling establishment was high at control and silicate covered of 100%>iron coating and silicate covered by 97.5%>phyllite coating by 94.8%>iron coating by 86%. Seedling height was high in silicate covered of 22.1cm>control of 21.2cm>silicate coating of 20.0cm>phyllite coating of 19.0cm>iron coating of 17.7cm>iron coating and silicate covered of 17.0cm, respectively.

A Case Study on the Slope Collapse and Reinforcement Method of the Phyllite Slope (천매암 지역에서의 비탈면 붕괴 원인규명 및 보강대책 사례연구)

  • Cho, Younghun;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.83-93
    • /
    • 2010
  • The purpose of this study is to present emergency rehabilitation, cause and the countermeasure of reinforcement about reinforced retaining wall and the slope collapse of the phyllite ground. The study area is broken easily because this area has rock mass discontinuity such as stratification, foliation, joint and fold. And this area consists of the ground where it happens easily to the failure of structure like reinforced retaining wall because of the phyllite ground sensitive to weathering. Counterweight fill in front of reinforced retaining wall was performed as emergency rehabilitation about displacement of reinforced retaining wall and the failure at the rear of slope on phyllite ground. After that, additional displacement didn't occur. Boring and geophysical exploration were launched to present emergency rehabilitation and develop the long-term method of reinforcement. This could grasp anticipated range of the failure section and identify internal and external factors of the cause of the slope collapse. Several methods of reinforcement were suggested by conducting the numerical analysis. When conducting design and construction of major structures at the ground which has complex discontinuities, the precise site investigation should be conducted. During construction, immediate action for over-displacement should be taken by performing the periodic measurement.

Petro-mineralogical and Mechanical Property of Fault Material in Phyllitic Rock Tunnel (천매암 터널 단층물질의 암석.광물학적 및 역학적 특성)

  • Lee, Kyoung-Mi;Lee, Sung-Ho;Seo, Yong-Seok;Kim, Chang-Yong;Kim, Kwang-Yoem
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.339-350
    • /
    • 2007
  • Content, swelling, concentration, drainage of clay are critical factors that could control rock failures as well as discontinuous geological structures like faults and joints. Especially, the proportional components of clay minerals can be one of few direct indicators to a rock failure caused well by rainfall. Criticality of the role of clay mineral contents gets bigger in the slope and tunnel design. This study, using a horizontal boring core of pelitic/psammitic phyllite from the OO tunnel construction site, aims to investigate mineral composition changes related to fault distribution and their mechanical effects to the activity of these discontinuous layers (i.e., clay-filled fault layers), and eventually to define correlation among rock compositions, weathering products and rock instabilities. Field survey and lab tests were carried out for the composition and strength index of fault clay minerals within the core samples and microscopic analysis of fresh and weathered rock samples.

Phyllite as a New Flame Retardant Synergist for ABS Resin Containing Bromine Flame Retardant (브롬계 난연제를 사용한 ABS 수지에 대한 신규 난연 상승작용제로시의 천매암)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.172-181
    • /
    • 2006
  • Flame retardant synergism of phyllite was studied in ABS resins containing brominated flame retardant(tetrabromobisphenol A(TBBA) or brominated epoxy oligomer(BEO)) and antimony trioxide($Sb_2O_3)$. Talc was used for the comparison purpose. ABS compounds were manufactured by a twin-screw co-rotating extruder and subsequently injection molded into several specimen for mechanical and thermal properties. Flame retardancy of ABS compounds measured by UL 94 vertical test with 1.6 mm thick bar specimen was enhanced by the replacement of antimony trioxide into phyllite or talc in the range of 12.5%(0.5 wt%) to 37.5%(1.5 wt%). Phyllite showed better synergistic effect comparing with talc especially for BEO. Only phyllite enhanced the flowability of ABS compounds. Notched Izod impact strength decreased with the proportion of phyllite or talc content. Phyllite could replace the antimony trioxide up to the content of 25%(1 wt%) to give better flame retardancy and flowability without darkening problem.