• Title/Summary/Keyword: 척추 영역

Search Result 58, Processing Time 0.025 seconds

Development of Image Segmentation Model for Sarcopenia Diagnosis and Its application (근감소증 진단을 위한 영상분할 모델 개발 및 적용)

  • Noh, Si-Hyeong;Yu, Yeongju;Lim, Dongwook;Kim, Ji-Eon;Lee, Chungsub;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.577-579
    • /
    • 2021
  • 의료영상기반의 인공지능 연구는 질환의 조기진단 및 예측 분야에 눈부신 기술발전이 되어왔다. 근감소증 질환은 다양한 기저질환을 기반으로 발생하며, 특히 60대 이상은 30%의 유병율을 갖는다. 해당 질환은 임상적인 진단 방법의 발달과 임상 결과가 알려지면서 관심이 증가하고 있다. 최근 근감소증 진단방법 중의 하나로 CT 또는 MR 의료영상을 통한 진단방법이 제시되었다. 본 논문에서는 인공지능을 기반으로 하여, 근감소증을 진단하기 위해 척추부위 중 Lumbar 3 영역의 근육, 지방 영역의 영상분할 모델을 제시하고자 한다. 이를 위해 인공지능 영상분할 모델을 개발하는 과정과 그 근육과 지방의 영상분할 결과를 보인다. 본 논문에서 제시한 영상분할모델을 통해 근감소증을 빠르게 진단할 수 있을 것으로 기대한다.

Human Motion Measurement with One Color Camera (한 대의 칼라카메라를 이용한 인체 운동량 측정)

  • 안정호
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • 본 연구는 한 대의 칼라 카메라와 광학장치를 이용하여 인체의 운동량을 측정하는 시스템에 관한 것이다. 광학을 이용하여 인체의 운동량을 측정하기 위해서는 일반적으로 두 대 이상의 카메라로부터 획득된 영상으로 측정물체에 대한 좌표를 구하는 입체화상법을 사용한다. 제시한 시스템은 서로 다른 색의 칼라필터와 거울을 통과한 두 개의 광경로를 빔스플리터로 중첩시켜서 한 대의 칼라카메라로 영상을 획득하여 분석하는 것으로, 한 대의 칼라카메라가 두 대의 단색 가상카메라 역할을 하는 것이다. 단색 가상카메라는 적색, 녹색과 청색의 세 가지로 본 실험에서는 적색의 밝기가 가장 낮아서 녹색과 청색 가상카메라를 사용하였다. 광학장치를 이용하여 칼라카메라로 획득된 적색, 녹색과 청색별로 8bit인 24bit 디지털영상에서 녹색과 청색 영상은 각각 녹색과 청색의 가상카메라로 획득한 영상이다. 이 영상들을 이진화하여 측정물체를 배경으로부터 분리하고, 이진영상에서 일정한 면적을 지닌 영역의 중심을 측정물체가 영상면에 투영된 좌표로 본다. 녹색과 청색 영상에서 동일한 측정물체에 대한 영상선을 구하고 이들의 교차점을 측정물체의 공간좌표로 하였다. 이 시스템을 이용하여 직립 및 신전자세에서 척추의 형상을 측정하였으며 향후 시스템의 추가적인 개발과 적응분야에 대하여도 살펴보았다.

  • PDF

Muscle Fatigue Analysis by Median Frequency and Wavelet Transform During Lumbar Extension Exercises (요추신전운동 시 중앙주파수와 웨이브렛 변환을 이용한 근피로도 분석)

  • 장근;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.377-382
    • /
    • 2004
  • In the present study, thirteen healthy volunteers performed lumbar extension exercises at 48$^{\circ}$/s, loaded by 40, 50, 60kg(about 44, 55, 66% of maximum voluntary contraction). During the whole period of exercises, electromyographic(EMG) signal was measured in the erector spinae muscle in order to determine muscle fatigue. Using the wavelet transform, EMG signal was separated by various frequency ranges in the time-frequency domain, and muscle fatigue was analyzed, comparing with the results based on the median frequency(MDF). MDF shifted toward the lower frequency ranges with the muscle fatigue, showing a single characteristic frequency. On the other hand, wavelet transform of EMG signals resulted in increased power amplitude in lower frequency ranges(0-125Hz), and decreased power amplitude in higher frequency ranges(375-468Hz). This study reveals that the muscle fatigue during dynamic movement is explained better by wavelet analysis.

Diagnosis of Spinal Arachnoid Cyst using Magnetic Resonance Imaging in a Dog (개에서 자기공명영상을 이용한 척추부 지주막 낭종의 진단)

  • Shin, Chang-ho;Kim, Young-ki;Hwang, Tae-sung;Yoon, Young-min;Jung, Dong-in;Yeon, Seong-chan;Lee, Hee-chun
    • Journal of Veterinary Clinics
    • /
    • v.32 no.5
    • /
    • pp.464-468
    • /
    • 2015
  • A 6-year-old, intact male maltese was presented with hindlimb ataxia of 4 day duration. Physical and neurological examinations revealed a bright, alert, and responsive dog, with no evidence of cranial nerve deficits, conscious proprioceptive deficits. Spinal reflexes of the hind and forelimbs were normal. Patellar, cranial tibial, and withdrawal reflexes were normal. Pain could not be elicited on manipulation of the neck or palpation of the spinal column. Survey radiographs of the vertebral column were unremarkable. Computed tomography (CT) scans in the transverse plane were performed. The results of CT imaging were unremarkable. Magnetic resonance imaging (MRI) in both sagittal and transverse planes was performed. The extent of the lesion was 25 mm in length by 4 mm in thickness. The spinal cord was deviated ventrally and appreared thinner. On T1-weighted and FLAIR images, a discrete hypointense lesion dorsal to the spinal cord was observed at L1-2 which was contiguous with the subarachnoid space. On T2-weighted images, this region was hyperintense, consistent with a fluid-filled structure. The signal intensity of the cysts was equivalent to cerebrospinal fluid (CSF). Surgical treatment involving dorsal laminectomy had successful outcomes.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

Standards for Applying Reasonable Receive Bandwidth to Suppress Metal Artifacts in MRI (MRI 검사 시 금속 인공물 억제를 위한 합리적인 수신대역폭 적용 기준)

  • Se-Jong Yoo;Min-Cheol Jeon;Nam-Yong An;Soon-Yong Kwon;Seong-Ho Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1115-1122
    • /
    • 2023
  • This study aimed to present reasonable reception bandwidth application standards for the purpose of suppressing metal objects during MRI examinations. For this purpose, T2 contrast images were acquired using high-speed spin echo technology on a phantom made of screws for spinal surgery, and metal objects were detected. In addition, images were obtained by increasing the reception bandwidth from 100 Hz/PX to 800 Hz/PX by 100 Hz/PX. The metal artifacts were determined as the sum of the areas of the signal attenuation area and the signal accumulation area. In addition, Pearson correlation analysis was performed to analyze the pattern of metal artifacts according to imaging variables. As a result, the signal accumulation area did not change significantly as the reception bandwidth increased (p>0.05), but the signal loss area and the area of metal artifacts decreased as the reception bandwidth increased (p<0.05). Interestingly, the area of metal objects decreased to a maximum in the section where the reception bandwidth was increased from 100 Hz/PX to 200 Hz/PX, consistent with the section where the echo spacing was reduced to a maximum due to the increase in reception bandwidth. In addition, the correlation analysis results also showed that the eco spacing was more related to the signal attenuation area and the area of metal objects than to the reception bandwidth. Therefore, if the reception bandwidth is increased for the purpose of reducing metal objects, it is reasonable to set it based on a value that minimizes the echo spacing in consideration of image quality factors.

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

Generation Method of 3D Human Body Level-of-Detail Model for Virtual Reality Device using Tomographic Image (가상현실 장비를 위한 단층 촬영 영상 기반 3차원 인체 상세단계 모델 생성 기법)

  • Wi, Woochan;Heo, Yeonjin;Lee, Seongjun;Kim, Jion;Shin, Byeong-Seok;Kwon, Koojoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.40-50
    • /
    • 2019
  • In recent years, it is important to visualize an accurate human body model for the low-end system in the medical imaging field where augmented reality technology and virtual reality technology are used. Decreasing the geometry of a model causes a difference from the original shape and considers the difference as an error. So, the error should be minimized while reducing geometry. In this study, the organ areas of a human body in the tomographic images such as CT or MRI is segmented and 3D geometric model is generated, thereby implementing the reconstruction method of multiple resolution level-of-detail model. In the experiment, a virtual reality platform was constructed to verify the shape of the reconstructed model, targeting the spine area. The 3D human body model and patient information can be verified using the virtual reality platform.

Ultrasound-Guided Femorosciatic Nerve Block (초음파 유도 대퇴좌골 신경 차단술)

  • Kang, Chan;Kim, Young-Mo;Hwang, Deuk-Soo;Kim, Joung-Hun;Park, Jun-Young;Lee, Woo-Yong
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.3 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • Since the extent of use of musculoskeletal ultrasound in orthopaedic surgery is expanding, popliteal block(sciatic nerve block) and femoral nerve block(saphenous nerve block) are easily and safely performed without complications such as nerve injury or incomplete block. Also, due to the expanding use of ultrasound, orthopaedic surgery of not only foot but also ankle and lower leg could be done without general anesthesia or spinal anesthesia. We describe a detailed technique for ultrasound-guided femorosciatic nerve block based on the experience over 120 cases.

  • PDF

Development and Validation of Spine Classification Model for Sarcopenia Diagnosis and Validation (근감소증 진단을 위한 척추 분류 모델 개발 및 검증)

  • Chung-sub Lee;Dong-Wook Lim;Si-Hyeong Noh;Chul Park;Chang-Won Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.475-478
    • /
    • 2023
  • 컴퓨터 단층촬영(CT)을 활용한 골격근 단면적은 근감소증과 관련된 기능을 평가하는 데 사용된다. 일반적인 근감소증 연구는 요추 3번의 골격근량을 주로 보지만 암 또는 폐절제술과의 상관관계를 예측하기 위한 다양한 연구에서는 흉추 4번, 7번, 8번, 10번, 12번 다양한 수준의 골격근량으로 연구를 진행하고 있음을 알 수 있다. 본 논문에서는 흉부와 복부 CT 영상에서 근감소증 진단을 위해서 흉추와 요추의 영역별 슬라이스를 검출하기 위해서 CNN 구조의 EfficientNetV2를 전이학습하여 인공지능 모듈을 개발하였다. 인공지능 모듈은 전체 흉부 및 복부 CT 영상에서 Cervical, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, L1, L2, L3, L4, L5, Sacral 총 19 클래스를 검출하도록 하였다. Test 데이터셋을 사용하여 Confusion Matrix와 Grad-CAM으로 모델의 정확도를 시각화하여 보였으며 검증으로 인공지능 모듈의 정확성을 측정하였다. 끝으로 우리가 개발한 다기관 공동연구 지원플랫폼에 적용하여 시각화된 결과를 보였다.