• Title/Summary/Keyword: 척추교정 장치

Search Result 8, Processing Time 0.022 seconds

High Stiffness Frame Design for a Spine Manipulation Device (척추교정 장치의 고강성 프레임 설계)

  • Moon, Young-Hwan;Kim, Jung-Hoon;Kim, Kwon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.89-95
    • /
    • 2011
  • High stiffness frame design for a spine manipulation device was developed in this research. For the safety of a spinal manipulation, high stiffness of the device is required. A finite element (FE) model of the device frame is created and validated by measured vibration data. Parameters are suggested for high stiffness design of the frame. Based on the Taguchi design of experiment (DOE), a practical set of design parameter values is suggested.

The Manufacture of Digital X-ray Devices and Implementation of Image Processing Algorithm (디지털 X-ray 장치 제작 및 영상 처리 알고리즘 구현)

  • Kim, So-young;Park, Seung-woo;Lee, Dong-hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.195-201
    • /
    • 2020
  • This study studied scoliosis, one of the most common modern diseases caused by lifestyle patterns of office workers sitting in front of computers all day and modern people who use smart phones frequently. Scoliosis is a typical complication that takes more than 80% of the nation's total population at least once. X-ray are used to test for these complications. X-ray, a non-destructive testing method that allows scoliosis to be easily performed and filmed in various areas such as the chest, abdomen and bone without contrast agents or other instruments. We uses NI DAQ to miniaturize digital X-ray imaging devices and image intensifier in self-shielding housing with Vision Assistant for drawing lines to the top and the bottom of the spine to acquire angles, i.e. curvature in real-time. In this way, the research was conducted to see scoliosis patients and their condition easily and to help rapid treatment for solving the problem of posture correction in modern people.

False Aneurysm of Descending Thoracic Aorta Developed by Screw in Thoracic Vertebra - a case report - (척추 나사 기구 때문에 생긴 흉부하행대동맥의 가성 대동맥류 - 치험 1예 -)

  • 한재오;최종범
    • Journal of Chest Surgery
    • /
    • v.32 no.9
    • /
    • pp.844-846
    • /
    • 1999
  • Chronic irritation to arterial wall by foreign material may give rise to delayed vascular injury. A 50 years old male patient with kyphoscoliosis had undergone fixation of orthopedic Cotrel-Dubousset(CD) rods and screws. Fourteen months after that surgery, a false aneurysm of the descending thoracic aorta associated with pulsating hematoma in the muscular chest wall developed. The false aneurysm was managed by resecting the diseased aortic segment and replacing the vascular graft.

  • PDF

Development of Postural Correction App Service with Body Transformation and Sitting Pressure Measurement (체위 변환과 좌압 측정을 통한 자세교정 앱 서비스의 개발)

  • Jung-Hyeon Choi;Jun-Ho Park;Young-Ki Sung;Jae-Yong Seo;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • In general, maintaining an incorrect sitting posture for a long time is widely known to adversely affect the spine. Recently, several researchers have been interested in the causal relationship between incorrect sitting posture and spinal diseases, and have been studying methods to precisely measure changes in sitting or standing posture to prevent spinal diseases. In previous studies, we have developed a sensor device capable of measuring real-time posture change, applied a momentum calculation algorithm to improve the accuracy of real-time posture change measurement, and verified the accuracy of the postural change measurement sensor. In this study, we developed a posture measurement and analysis device that considers changes in the center of body pressure through the developed sitting pressure measurement, and it confirmed the sensor as an auxiliary tool to increase the accuracy of posture correction training with improving the user's visual feedback.

Posture guidance system using 3-axis accelerometer for scoliosis patient (3축 가속도 센서를 활용한 척추 측만증 환자용 자세 교정 유도 장치)

  • An, Y.S.;Kim, K.S.;Song, C.G.
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.396-398
    • /
    • 2009
  • Scoliosis is a three-dimensional deformity caused by lateral curvature of the spine. The existing braces used to correct the posture were some drawbacks such as inconvenience, tightness as well as unfitness to wear. In this study, we devised a posture guidance system in order to monitor a posture continuously and lead to pose correctly and a new method fur measuring a Cobb's angle value in third dimension based on two 3-axis accelerometers. As a result, the correlation coefficients between desired and measured angles were and standard error between desired and measured angles were 0.99, 1.32(x-axis), 0.99 and 1.10(y-axis), respectively. The devised system showed good potential for the optimal posture guide and an early detection of scoliosis.

  • PDF

Experimental Research for Traction force Sensor Development on Drawing Exercise Medical Instrument (재활 및 교정을 위한 견인운동치료기의 견인측정센서 개발에 관한 실험적 연구)

  • Lee, Sang-sik;Park, Won-yeop;Lee, Choong-ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • The traction system has been mainly used for rehabilitation and correction of patients with spine or gait diseases in orthopedics or at home. Some problems could occur in human body when patients forced their training using the traction system. So it needs to measure a traction force and control the training time. However, most of products on market have no sensor measuring traction force. Thus we designed and made a sensor detecting traction force using strain gauge, amplifier for transition to output signal and experiment devices for performance test. We carried out experiment of a sensor detecting a traction force and measured electric responses of it with respect to traction loads. Maximum error was within about 1% for experiments in static condition and the average error was about 0.7% for experiments in dynamic condition. We concluded that it is possible to use the developed sensor for measurement of traction force since the maximum output variation of a sensor detecting a traction force was about 0.3% in $0^{\circ}C-60^{\circ}C$ temperature condition.

  • PDF