• Title/Summary/Keyword: 처짐한도

Search Result 2, Processing Time 0.019 seconds

The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab could be installed to prevent such a phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and increasing the track deteriorations by excessive impact force acting on the track. In this study, parametric studies were performed to investigate the displacement limit on the approach slab to avoid such problems. The length and the amount of unequal settlement of approach slab were adopted as parameter for numerical analysis considering vehicle-track interaction. Car body accelerations, variations of wheel force, stresses in rail, and uplift forces induced on fastener clip were investigated. From the result, resonable settlement limit on the end of an approach slab according to slab length was suggested.

The Practice of Bending Deflection using Non-destructive MOE of Glulam (비파괴 탄성계수를 이용한 집성재의 휨변형 예측)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In the glulam beam deflection it is necessary to check the reliability of theory formula, because of wood anisotropy and wood qualities (knot, slop of grain). In this experiment, when bending stress occurred on glulam, practice deflection of glulam measuring with AICON DPA-Pro 3D system were compared with prediction deflection calculated as substituting MOE through non-destructive testing and static MOE through bending test in differential equation of deflection curve. MOE using ultrasonic wave tester of laminae, MOE using natural frequencies of longitudinal vibrations ($E_{cu}$, $E_{cf}$), MOE using ultrasonic wave tester of glulam ($E_{gu}$) and MOE using natural frequencies of longitudinal vibrations ($E_{gf}$) were substituted in this experiment. When practice deflection measured by 3D system was compared with prediction deflection calculated with differential equation of deflection curve, within proportional limit the ratio of practice deflection and prediction deflection was similar as 1.12 and 1.14, respectively. Deflection using ultrasonic wave tester was 0.89 and 0.95, Deflection using natural frequencies of longitudinal vibrations was 1.07 and 1.10. The results showed that prediction deflection calculated by substituting using non-destructive MOE of glulam having anisotropy in differential equation of deflection curve was agreed well with practice deflection.