• 제목/요약/키워드: 챗봇 의인화

검색결과 12건 처리시간 0.016초

패션상품 챗봇에 대한 신뢰 형성 요인 - 지각된 지능과 긍정적 인지의 매개효과를 중심으로 - (Factors driving Fashion Chatbot Reliability -Focusing on the Mediating Effect of Perceived Intelligence and Positive Cognition-)

  • 이하경;윤남희
    • 한국의류산업학회지
    • /
    • 제24권2호
    • /
    • pp.229-240
    • /
    • 2022
  • This study explores the effect of anthropomorphism on fashion chatbot reliability, mediated by perceived intelligence and cognitive evaluation. The moderating effects of individuals' need for human interaction between chatbot anthropomorphism and perceived intelligence, cognitive evaluation, and chatbot reliability are also explored. Participants, who were recruited through the online research firm, responded to questions after watching a video clip showing a conversation with a fashion chatbot on a mobile screen. The data were collected through Mturk, a crowdsourcing platform with an online research panel. All responses (N = 212) were analyzed using SPSS 26.0 for the descriptive statistics, frequency analysis, reliability analysis, exploratory factor analysis, and PROCESS procedure. The results demonstrate that chatbot anthropomorphism increases chatbot reliability, and this is mediated by chatbot intelligence. Although chatbot anthropomorphism increases cognitive evaluation, the effect of cognitive evaluation on chatbot reliability is not significant; thereby, the effect of chatbot anthropomorphism on chatbot reliability is not mediated by the cognitive evaluation. The direct effect of anthropomorphism on chatbot reliability is also moderated by individuals' need for human interaction. For participants with a high need for human interaction, chatbot anthropomorphism increases chatbot reliability; however, anthropomorphism does not significantly affect chatbot reliability for participants with a low need for human interaction. The study's findings contribute to expanding the literature on consumers' new technology acceptance by testing the antecedents affecting service reliability.

모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석 (A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach)

  • 김소연;조지연;박상열;이봉규
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.109-119
    • /
    • 2024
  • 본 연구는 모바일 등 온디바이스(on-device)에 탑재된 생성형 AI 기반 서비스가 증가하는 환경 속에서 온디바이스 AI 관련 초기연구에 기여하고자 한다. 모바일 환경에서 생성형 AI 기반 챗봇 서비스의 성공 전략을 도출하기 위해 구글 플레이 스토어에서 수집한 20만 건 이상의 실제 사용자 경험 리뷰 데이터를 LDA 토픽모델링 기법을 사용하여 분석하였다. 정보시스템 성공 모델(ISSM)에 기반하여 도출된 주제를 해석한 결과 정보 품질에는 튜터링, 대답의 제한, 신뢰할 수 없는 정보와 같은 토픽이, 시스템 품질에는 멀티모달서비스, 대화의 품질, 디바이스 상호운용성의 토픽이, 서비스 품질에는 디바이스 간 호환성, 서비스의 사용 용이성, 유료 서비스의 품질, 계정 호환성의 토픽이, 마지막으로 순 효익에는 창의적 협업 토픽이 연결되었다. 생성형 AI의 의인화는 기존 모델로 설명되지 않는 새로운 경험 요인으로 나타났다. 본 연구는 사용자 측면에서의 구체적인 긍정 및 부정 경험 차원을 이론에 기반하여 설명함으로써 향후 관련 연구의 방향을 제시하고, 성공적인 비즈니스를 위한 개선점과 보완점을 찾아 기업에게 서비스의 성공적 운영을 위한 전략적 인사이트를 제공하고자 한다.