• Title/Summary/Keyword: 채널간 이득 오차

Search Result 7, Processing Time 0.024 seconds

A Study on the gain and phase matching between channels in the Monopulse Receiver (모노펄스 수신기의 채널간 정합에 관한 연구)

  • 공덕규
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • In this paper, the monopulse channel receiver which can be matched between channels through a wide bandwidth has been proposed. The effects of the gain and phase imbalance between channels on the slope of monopulse error signal were analyzed. Also, the matching method between channels in a wide bandwidth was proposed, by which monopulse slope could be stabilized. Using the implemented monopulse radar system the monopulse slope was measured in the anechoic chamber which include the moving horn antenna and the target signal generator. The results show that the wide band matching method is useful and applicable to various channel receivers

  • PDF

I/Q Gain and Phase Imbalances Compensation Algorithm by using Variable Step-size Adaptive Loops at Direct Conversion Receiver (가변 스텝 적응적 루프를 이용한 직접 변환 방식 수신기에서의 이득 및 위상 불일치 보상 알고리즘)

  • 송윤정;나성웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1104-1111
    • /
    • 2003
  • The paper presents an algorithm for the compensation of gain and phase imbalances to exist between I-phase and Q-phase signal at direct conversion receiver. We propose a gain and phase imbalances blind equalization compensation algorithm by using variable step-size adaptive loop at direct conversion receiver. The blind equalization schemes have trade-off between convergence speed and jitter effect for the compensation of gain and phase imbalance. We propose the variable step-size adaptive loop method, which varies the loop coefficients according to errors, for recovering these problem. By using variable step-size adaptive loops, we propose to speed up the convergence process and reduce the jitter effect and simulation results show that the algorithm compensates signal loss and speeds up convergence time.

Inter-stream Interference Cancellation for frequency selective MIMO systems (주파수 선택적인 MIMO 시스템에서의 스트림간 간섭제거 기법)

  • Park, Sunho;Park, Jungyong;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.119-121
    • /
    • 2011
  • 본 논문은 주파수 선택적인 MIMO 시스템에서 스트림간의 간섭을 효과적으로 제거하는 기법을 제안한다. 본 논문에서는 계산적으로 복잡도가 높은 리스트 검색 기법 대신에 채널 복호기에서 사용되는 사후 확률(a posteriori probability, APP)를 얻기 위해 반복적으로 스트림간 간섭을 제거하는 선형 이퀄라이저를 사용하였다. 반복회수가 증가할수록 이퀄라이저에 의해 채널은 점차 single input multiple output (SIMO) 형태의 채널에 가까워지고 MIMO 이퀄라이저의 최소평균제곱오차 (MMSE)에 가까워진다. HSPA UMTS standard를 따르는 $2{\times}2$ MIMO 시스템의 다운링크 통신 모의실험을 통해 제안된 기법이 기존의 수신 기법에 비해 상당한 성능이득을 얻을 수 있음을 확인할 수 있다.

  • PDF

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

Modeling and Simulation Techniques for Performance Analysis of High Resolution SAR System (고해상도 영상레이더 성능 분석을 위한 모델링 및 시뮬레이션 기법)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Hyeon-Ik;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.558-565
    • /
    • 2013
  • In this paper, modeling and simulation for performance analysis of high resolution SAR system has been carried out in the time, frequency and numeric domain using ADS Ptolemy simulation tool of Agilent corporation. SAR system consists of antenna, controller and transceiver. Error parameters affecting SAR system performances have been defined, modeled and simulated such as phase noise of frequency synthesizer, amplitude and phase characteristic of TWTA, sampling frequency of waveform generator and I/Q imbalance. Finally, the development requirements of SAR system based on the impulse response function have been derived.

A Study of Transceiver System for Ka-band Road Watch Radar (Ka 대역 도로 감시 레이더를 위한 송수신 시스템 연구)

  • Shin, Seung-Ha;Jun, Gye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.933-940
    • /
    • 2011
  • In this paper, Ka-band transceiver for road watch radar system is designed and fabricated. The transceiver for road watch radar system is composed of waveform generator, frequency generator. IF transceiver and RF up/down converter. The transceiver especially has 3 different waveform mode for target detection range. The transceiver had over 150 MHz bandwidth in Ka-band and 22 dBm output power. The receiver gain and noise figure was 30 dB and 4 dB respectively. The receive dynamic range was 65.28dB and amplitude imbalance and phase imbalance of I/Q channel was 0.3 dB and 1.8 degree respectively. The transceiver meets the required electrical performances through the individual tests.

The Optimal Number of Transmit Antennas Maximizing Energy Efficiency in Multi-user Massive MIMO Downlink System with MRT Precoding (MU-MIMO 하향링크 시스템에서의 MRT 기법 사용 시 에너지 효율을 최대화하는 최적 송신 안테나의 수)

  • Lee, Jeongsu;Han, Yonggue;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.33-39
    • /
    • 2014
  • We propose an optimal number of transmit antennas which maximizes energy-efficiency (EE) in multi-user massive multiple-input multiple-output (MIMO) downlink system with the maximal ratio transmission (MRT) precoding. With full channel state information at the transmitter (CSIT), we find a closed form solution by partial differential function with proper approximations using average channel gain, independence of individual channels, and average path loss. With limited feedback, we get a solution numerically by the bisection with approximations in the same manner, and analyze an effect of feedback bits on the optimal number of transmit antennas. Simulation results show that the optimal numbers of transmit antenna getting from proposed closed form solution and exhaustive search are nearly same.