• 제목/요약/키워드: 창호형 환기시스템

검색결과 5건 처리시간 0.022초

실내 미세먼지 저감을 위한 창호형 환기시스템 성능평가 (Performance Evaluation of Window Ventilation System for Reducing Indoor particulate matter)

  • 양영권;박진철
    • 토지주택연구
    • /
    • 제10권3호
    • /
    • pp.1-7
    • /
    • 2019
  • Indoor particulate matter(PM) is a carcinogen and needs to be removed and managed. It is generally reduced and removed through ventilation and filtration. Owing to the recent occurrence of high-concentration fine dust and yellow dust in the atmosphere, however, it is difficult to expect the purification of indoor air through the simple introduction of the outside air. For residential buildings, in particular, they are highly dependent on natural ventilation but the lack of natural ventilation is worsening because concerns over the inflow of external pollutants are increasing. Therefore, this study designed and manufactured a window ventilation system that does not require a duct to improve the maintenance and management problems of general ventilation system, and constructed indoor PM concentration change data through performance evaluation.

주거공간 내 IT기술 적용 에너지 저감 창호형 환기시스템 연구 (A Study on Window Type Ventilation System Using IT Technology for Energy Saving in Housing Space)

  • 이은혜;김용성;지충구
    • 한국주거학회논문집
    • /
    • 제24권2호
    • /
    • pp.61-68
    • /
    • 2013
  • This study has the purpose to adapt IT technology on Window Type Ventilation System for the energy saving and providing of user-centered comfortable environment. This is Derived a look at the case of the window type ventilation system and researched its IT technology for reducing energy applied to the Green Home. This indicates a solution for the established Window Type Ventilation System which can not be satisfied with user's requirement by proposing Window Type Ventilation System applied to IT technology that makes it control the intelligent, combined indoor environment system and providing information. Also, it shows energy saving efficiency of Window Type Ventilation System applied to IT technology based on the model study, analysing the performance of air-conditioning and ventilation energy saving through the experiment to compare with the established Window Type Ventilation System. The result of this study has the significance that it suggests an alternative for energy saving of housing space.

창호통합형 배열회수 환기시스템의 열성능 및 경제성 평가 (An Analysis on Thermal Performance and Economic of Heat Recovery Ventilation System Integrated with Window)

  • 성욱주;조수;송규동
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.646-655
    • /
    • 2012
  • This study is intended to analyze the thermal performance and evaluate the applicability about non-duct type heat recovery ventilation system integrated with window. Eventually, economic analysis of the system is conducted according to building energy saving ratio of it. As results of the thermal performance, the U-factor of the window conducted on the basis of KS F 2278 appears to $1.8W/m^2K$, and the effective heat exchange efficiency of the ventilator conducted on the basis of KS B 6879 appears 49.95% for cooling, 66.89% for heating. In the applicability evaluated by TRNSYS 16, the caes of applying the heat recovery ventilator integrated with window is found to reduce the cooling or heating load by 2.9% or 13.5% than the non-ventilator case. The results of economic analysis taking a side of consumer is verified as the payback is 3 years, and the accumulated earning is 1,408,133 won in terms of '600,000 won/unit' for initial cost, 10 years for useful life of the system.

창호일체형 환기시스템 및 중앙냉방시스템 연계 운영에 대한 수치해석적 연구 (Numerical Analysis on the Coupled Operation of Ventilation Window System and Central Cooling System)

  • 박동윤;장성주
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.385-395
    • /
    • 2015
  • This study evaluated indoor environmental characteristics in an office room equipped both with ventilation window system and central cooling system. Fresh air is supplied only by the central cooling system whereas indoor air is discharged outside through both ceiling diffuser and a ventilation window system. Numerical study is conducted by changing the volumetric flow rates of exhaust ports of each system. For estimating the performance of this coupled system, $CO_2$ concentration and Predicted Mean Vote (PMV) were calculated using Computational Fluid Dynamics (CFD) simulation. The more the ceiling diffuser exhausts indoor air, the more the $CO_2$ concentration decreases. However, when the ventilation window system exhausts more indoor air, thermal comfort level gets improved in the office room with cooling system. Therefore, when the ventilation window system is operated, the coupled operation with central cooling system should be considered for enhancing indoor air quality and thermal comfort, together.