• Title/Summary/Keyword: 참억세

Search Result 1, Processing Time 0.015 seconds

Heavy metal concentration of plants in Baekdong serpentine area, western part of chungnam (충남 서부 백동 사문암지역 식물체의 중금속 함량)

  • 송석환;김명희;민일식;장인수
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.113-125
    • /
    • 1999
  • Heavy metal elements were analysed to assess degrees of heavy metal contents for the plants, M. sinensis, A. vulgaris and G. oldhamiana, from the Baekdong serpentine area within the western part of Chungnam. The area was divided into two sites ; serpentine area (SP, consisting of serpentinite, SP) and non-serpentine area (NSP, containing amphibole schist, AS and gneiss, GN). Their host rocks(R) and top soils(S) were also collected from the each site. As the results of the study, the plants contain high concentration of Ni Cr, Co in the SP and Fe, Zn in the AS and GN. Plants from the AS of the NSP contain mainly high content in the most of elements. Averages of Ni, Co and Cr for the plants decreased in the order of SP, AS and GN. In the total element contents, M. sinensis and A. vulgaris decreased in the order of Fe > Ni or Cr > Zn > Co > As > Sc within the SP and in the order of Fe > Zn > Cr > Ni, within the GN. Comparing among the parts of plants, root parts were higher in the most of elements than the above grounds. In the relative element ratios of plants collected from the SP and GN (SP/GN) M. sinensis was lower than A. vulgaris in the most of elements, suggesting that the M. sinenis shows low absorption within the infertile serpentine soil and high absorption within the fertile gneiss soil. In the element contents of the top soils and their host rocks, the SP shows higher Ni, Co and Cr contents than the others. Their total contents decreased from SP to AS and GN, suggesting that the soils reflect the composition of their host rocks. Total element contents of the SP decreased in the order of Fe> Cr or Ni> Co> Zn> As> Sc and, for the GN, in the order of Fe> Zn> Cr> Ni> Co or Sc, respectively. In the relative element ratios, R/S of the SP decreased in the order of Cr> As> Fe> Sc> Co> Ni> Zn and for the GN, in the order of Sc> Fe> Ni> Zn> Cr> Co. Comparing with plants within the each site, their top soils were higher than the plants in the most of elements. and their increase and decrease trends for each element are similar. Differences of element contents between the top soils and plants decreased in the order of SP, AS and GN. Plants of the GN were moi-e similar to their soils than those of the others, suggesting that each plant species show different absorptions within the different soils. Comparing with the plants of GN, higher Ni, Co, Cr contents within those of the SP and their survival within the infertile serpentine soil suggest that the M. sinensis, A vulgaris and G. oldhamiana may be the tolerance species in the serpentine soil. Comparisons with the upper crust show that M. sinensis, and A. vulgaris within the SP show high Hi and Cr contents. suggestive of hyperaccumulation. Upper results with the previous studies for the contaminated soils developed as parent materials with the serpentinites suggest additional studies for ecological behaviors for the plant and degrees of accumulations for the elements need to know phytoextraction of the heavy metal elements within the soils.

  • PDF