Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: 착용센서

Search Result 231, Processing Time 0.049 seconds

Ring-type Heart Rate Sensor and Monitoring system for Sensor Network Application (센서 네트워크 응용을 위한 반지형 맥박센서와 모니터링 시스템)

  • Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.619-625
    • /
    • 2007
  • As low power, low cost wireless communication technology like Bluetooth, Zigbee, RFID has been put to practical use together with the wellbeing trend, the concern about ubiquitous health care has been greatly increased and u-Health is becoming one of the most important application in the sensor network field. Especially, development of the medical services to be able to cope with a state of emergency for solitary senior citizens and the aged in silver town is very meaningful itself and their needs are also expected to continuously increase with a rapid increase in an aging population. In this paper we demonstrate the feasibility of extracting accurate heart rate variability (HRV) measurements from photoelectric plethysmography(PPG) signals gathered by a ring type pulse oximeter sensor attached to the finger. For this, we made 2 types of ring sensor, that is reflective and pervious type, and developed the remote monitoring system which is able to collect HR data from ring sensor, analyze and cope with a state of emergency.

Analysis of the characteristics of inertial sensors to detect position changes in a large space (넓은 공간에서 위치 변화를 감지하기위한 관성 센서의 특성 분석)

  • Hong, Jong-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.770-776
    • /
    • 2021
  • Positioning systems have been actively researched and developed over the past few years and have been used in many applications. This paper presents a method to determine a location in a large space using a sensor system consisting of an accelerometer and a single-axis gyroscope. In particular, to consider usability, a sensor device was loosely worn on the waist so that the experimental data could be used in practical applications. Based on the experimental results of circular tracks with radiuses of 1m and 3m, in this paper, an algorithm using the threshold of rotation angle was proposed and applied to the experimental results. A tracking experiment was performed on the grid-pattern track model. For raw sensor data, the average deviation between the final tracking point and the target point was approximately 15.2 m, which could be reduced to approximately 4.0 m using an algorithm applying the rotation angle threshold.

A Remote Control of 6 d.o.f. Robot Arm Based on 2D Vision Sensor (2D 영상센서 기반 6축 로봇 팔 원격제어)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.933-940
    • /
    • 2022
  • In this paper, the algorithm was developed to recognize hand 3D position through 2D image sensor and implemented a system to remotely control the 6 d.o.f. robot arm by using it. The system consists of a camera that acquires hand position in 2D, a computer that controls robot arm that performs movement by hand position recognition. The image sensor recognizes the specific color of the glove putting on operator's hand and outputs the recognized range and position by including the color area of the glove as a shape of rectangle. We recognize the velocity vector of end effector and control the robot arm by the output data of the position and size of the detected rectangle. Through the several experiments using developed 6 axis robot, it was confirmed that the 6 d.o.f. robot arm remote control was successfully performed.

Personal Mobility Safety Helmet Device using Multi-Sensor and Arduino (다중센서 및 아두이노를 활용한 Personal Mobility 스마트헬멧)

  • Dae-Hyun Kim;Won-Young Yang;Dong-Wook Han;Ju-Min Ham;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.723-730
    • /
    • 2023
  • Due to the recent development of battery technology, various types of means of transportation such as electric kickboards, Segways, and electric bicycles have emerged, which can be defined as Personal Mobility. In this paper, as the incidence of safety accidents increases due to the increase in the number of users of Personal Mobility, safety helmet devices that strengthen safety capabilities and peripheral recognition functions were studied. In order for the helmet to send a safety signal, Arduino was used as a base to set the value of the sensor according to changes in distance and angle using the ultrasonic sensor to minimize errors and ensure smooth recognition. In addition, a gyro sensor was used to turn on the direction indicator according to each slope. Using a CDS sensor, the LED is designed to turn on when it goes below 150 lux at night. Finally, it is possible to check whether a helmet is worn within 5cm, and when driving at an average speed, the direction indicator light is turned on at 10 degrees, and the LED is turned on at less than 150 lux.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

Motion Artifacts reduction from the PPG based on the Improved PMAF for the U-Healthcare System (U-헬스케어 시스템을 위한 개선된 PMAF 기반의 PPG 신호의 동잡음 제거)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Jun, Jae-Chul;Lee, Gun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.28-34
    • /
    • 2008
  • The real-time biomedical signal monitoring is a very important factor to realize the ubiquitous healthcare environment. Most of these devices for monitoring the biomedical information get the PPG signal from the user, and these signals are utilized for monitoring their health. It is inconvenient to get the PPG because the user should wear the finger probe with his finger for measuring the PPG signal. Also it is difficult to get the PPG correctly, because of the motion artifacts from the movement of the user. In this paper, we develop the watch type biomedical signal monitoring system without the finger probe, and propose the new algorithm for reducing the motion artifacts from the PPG signal. We designed the system which gets the PPG from the sensor on the wrist band strip. As compared with the finger probe type, this system we proposed is more affected by the motion artifacts. So to filter this motion artifacts, we propose the new method; the improved PMAF(Periodic Moving Average Filter) method.

Smart-clothes System for Realtime Privacy Monitoring on Smart-phones (스마트폰에서 실시간 개인 모니터링을 위한 스마트의류 시스템)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Park, Won-Ki;Park, Soo-Hyun;Lee, Sung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.962-971
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smart-phone App. This smart-clothes is able to monitor wearer users' health condition and activity levels through the gyro, temp and acceleration sensor. Sensed vital signs are transmitted to a bluetooth-enabled smart-phone in the smart-clothes. Thus, users are able to have real time information about their user condition, including activities level on the smart-application. User context reasoning and behavior determine is very difficult using multi-sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used Multi-black Filter and SVM processing behavior for 3-axis value as a representative value of one.

The User Identification System using the ubiFloor (유비플로어를 이용한 사용자 인증 시스템)

  • Lee Seunghun;Yun Jaeseok;Ryu Jeha;Woo Woontack
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.258-267
    • /
    • 2005
  • We propose the ubiFloor system to track and recognize users in ubiquitous computing environments such as ubiHome. Conventional user identification systems require users to carry tag sensors or use camera-based sensors to be very susceptible to environmental noise. Though floor-type systems may relieve these problems, high cost of load cell and DAQ boards makes the systems expensive. We propose the transparent user identification system, ubiFloor, exploiting user's walking pattern to recognize the user with a set of simple ON/OFF switch sensors. The experimental results show that the proposed system can recognize the 10 enrolled users at the correct recognition rate of 90% without users' awareness of the system.

Capacitive Skin Piloerection Sensors for Human Emotional State Cognition (인간의 감정변화 상태 인지를 위한 정전용량형 피부 입모근 수축 감지센서)

  • Kim, Jaemin;Seo, Dae Geon;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.147-152
    • /
    • 2015
  • We designed, fabricated, and tested the capacitive microsensors for skin piloerection monitoring. The performance of the skin piloerection monitoring sensor was characterized using the artificial bump, representing human skin goosebump; thus, resulting in the sensitivity of 0.00252 and the nonlinearity of 25.9 % for the artificial goosebump deformation in the range of 0326μm. We also verified two successive human skin piloerection having 3.5 s duration on the subject's dorsal forearms, thus resulting in the capacitance change of -6.2 fF and -9.2 fF compared to the initial condition, corresponding to the piloerection intensity of 145μm and 194μm, respectively. It was demonstrated experimentally that the proposed sensor is capable to measure the human skin piloerection objectively and quantitatively, thereby suggesting the quantitative evaluation method of the qualitative human emotional state for cognitive human-machine interfaces applications.

The Study of Realtime Fall Detection System with Accelerometer and Tilt Sensor (가속도센서와 기울기센서를 이용한 실시간 낙상 감지 시스템에 관한 연구)

  • Kim, Seong-Hyun;Park, Jin;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1330-1338
    • /
    • 2011
  • Social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities increase, so does the occurrence of falls that could lead to fractures. Falls are serious health hazards to the elderly. Therefore, development of a device that can detect fall accidents and prevent fracture is essential. In this study, we developed a portable fall detection system for the fracture prevention system of the elderly. The device is intended to detect a fall and activate a second device such as an air bag deployment system that can prevent fracture. The fall detection device contains a 3-axis acceleration sensor and two 2-axis tilt sensors. We measured acceleration and tilt angle of body during fall and activities of daily(ADL) living using the fall detection device that is attached on the subjects'. Moving mattress which is actuated by a pneumatic system was used in fall experiments and it could provide forced falls. Sensor data during fall and ADL were sent to computer and filtered with low-pass filter. The developed fall detection device was successful in detecting a fall about 0.1 second before a severe impact to occur and detecting the direction of the fall to provide enough time and information for the fracture preventive device to be activated. The fall detection device was also able to differentiate fall from ADL such as walking, sitting down, standing up, lying down, and running.