• Title/Summary/Keyword: 차 실내 열 부하

Search Result 14, Processing Time 0.03 seconds

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

Secondary Air Nozzle Design of Combustion Chamber of 50 ton/day Commercial Incinerator (50톤/일 상업용 소각로 연소실 2차 공기 노즐 설계)

  • 박병수;이진욱;서정대;허일상
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.127-132
    • /
    • 1999
  • 우리나라의 도시폐기물 소각로는 화격자 위에 폐기물을 공급하고 화격자 밑에서 공기를 공급하는 스토커식 소각로를 대부분 채택하고 있다. 이러한 스토커 소각로 연소실내에서는 매우 복잡한 연소현상이 발생하는데, 연소실로 투입된 쓰레기는 먼저 건조부에서 수분의 건조가 일어나고, 화격자의 구동에 의해 쓰레기가 혼합 및 이송되면서 열분해, 가스화, 가연성분의 탈휘발화 및 연소, 일부 고정탄소의 표면연소 등의 반응이 일어난다. 그리고 1,2차 연소실에서는 휘발분 및 비산된 고체의 연소가 일어나는데, 이때 대류 및 복사열전달 등의 복잡한 현상을 수반하는 유동장이 형성된다. 더욱이 불균질한 특성을 갖는 쓰레기층 내에서의 복잡한 현상으로 인하여 발생하는 경계조건 설정의 불확실성으로 연소실내의 연소 현상을 전산해석하는 데에는 상당한 어려움이 있다.(중략)

  • PDF

공기순환형 구조체 축열 공조시스템

  • 이정재;정광섭
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.8
    • /
    • pp.15-18
    • /
    • 2002
  • 축열 공조방식 중 현재 가장 많이 보급되고 있는 방식은 빙축열 방식과 수축열 방식이다. 본래 축열식 공조는 열원 용량을 감소하고, 값싼 심야전력을 통해서 운전비용(running cost)의 절감을 목적으로 하지만, 열을 저장하기 위한 "축열조"가 필요하므로, 필연적으로 초기투자비(intial cost)의 증가를 동반하며, 기존의 건물에는 쉽게 적용할 수 없는 등의 문제점이 있다. 따라서 축열을 위한 초기비용을 증가시키지 않는 축열식 공조방식으로서 건축물 자체가 가지는 높은 열용량에 착안하여 구조체 축열에 관한 연구가 최근 활성화되고 있다. 구조체 축열은 건축물 그 자체를 축열 매체로 이용하기 때문에 별도의 축열조가 필요 없고, 구조체 로부터의 "복사"형태로 거주영역에 직접적으로 작용하여 실내의 온열환경을 향상시킬 수 있다. 이 때문에 2차측 공조기의 용량을 절감시킬 수 있고, 축열 부위에서의 열반송이 필요없는 등, 구조체 축열 시스템은 기존의 빙축열과 수축열 방식에서는 없는 여러가지 장점을 가지고 있다. 구조체 축열 공조시스템은 기존의 공조시스템 중에서 급기구 부위만을 변경하여 주간에서 종래의 공조시스템과 같이 실내로 공조 공기를 급기하고, 야간에는 급기구에 설치된 댐퍼를 조절하여 천정면으로 공조 공기를 급기함으로써 구조체에 열을 축열시키는 방안이다. 본 시스템은 기존의 설비시스템을 이용하여 건축물의 구조체를 축열, 공조개시전 및 주간의 부하를 대폭 줄임으로써 에너지를 절감시킬 수 있다는 장점을 갖는다. 따라서 구조체 축열 공조시스템은 "지구환경 유지.전력부하 평준화.안전성.에너지 절약.비용절감.쾌적성"의 모든 조건을 만족시키는 유력한 차세대 공조 방식이 될 것으로 판단되며, 본 보에서는 공기순환형 구조체 축열시스템을 소개하고자 한다.

  • PDF

Effect of Design Value Selection on Heating and Cooling Load Calculation in Greenhouses (설계 변수 선택이 온실의 냉난방부하 산정에 미치는 영향)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • For the main variables to be selected by the designer for the heating and cooling load calculation in greenhouses, in order to evaluate the effect of these design values on the heating and cooling load, the simulations were carried out by varying the respective design values. Based on these results, we proposed the design values which should pay special attention to selection. The design values which have the greatest effect on the heating load were the overall heat transfer coefficient of the covering material and the design outdoor temperature was next. The effect of the design values according to the number of spans showed little difference. In the case of the single-span greenhouse, the effect of the design values related to the underground heat transfer can not be ignored. However, in the case of the multi-span greenhouse, the effect of the design values related to the underground heat transfer and the infiltration rate were insignificant. The design values which have the greatest effect on the cooling load were the solar radiation into the greenhouse and the evapotranspiration coefficient, followed by the indoor and outdoor temperature difference and the ventilation rate. The effect of the design values showed a great difference between the single-span greenhouse and the multi-span greenhouse, but there was almost no difference according to the number of spans. The effect of the overall heat transfer coefficient of the covering material was negligible in both the single-span greenhouse and the multi-span greenhouse. However, the effect of the indoor and outdoor temperature difference and the ventilation rate on the cooling load was not negligible. Especially, it is considered that the effect is larger in multi-span greenhouse.

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

Experimental Analysis of Thermal Comfort of an Office Space for Different Supply Locations during Cooling (냉방시 사무실 공간의 급기 위치에 따른 실내 열환경 평가 실험)

  • 김명호;김요셉;김영일
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.115-120
    • /
    • 1999
  • 본 연구에서는 실제 조건과 유사하게 모사된 사무실 공간을 대상으로 냉방시 급기 위치에 따른 기온, 기류속도, 복사온도를 측정하여 열환경을 평가하였다. 사무실 공간은 실제의 조건과 유사하게 인체, 조명, 사무기기의 부하를 전기히터로 모사했으며, 외기부하는 벽체에 설치된 열교환기를 통과하는 부동액의 온도를 제어함으로써 모사하였다. 실험 결과 냉방 조건에서는 바닥급기 방식의 경우 평균온도가 천장급기에 비해 낮아 에너지 절약 측면에서 유리함을 알 수 있었다. 그러나 천장급기에 비해 수직온도차가 크고 급기구 근처에서는 수직온도차에 의한 불쾌감과 빠른 기류속도에 의한 드래프트의 위험이 있는 것으로 나타났다.

  • PDF

Experimental Study on the Characteristics of Ground Heat Exchange in Heating Greenhouses (난방 온실의 지중열 교환 특성에 관한 실험적 연구)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2016
  • The calculation method of ground heat exchange in greenhouses has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the soil temperature distribution and the soil heat flux in three plastic greenhouses of different size and location during the heating period. And then the calculation methods of ground heat exchange in greenhouses were reviewed. The soil temperature distributions measured in the heating greenhouse were compared with the indoor air temperature, the results showed that soil temperatures were higher than room temperature in the central part of greenhouse, and soil temperatures were lower than room temperature in the side edge of greenhouse. Therefore, it is determined that the ground heat gain in the central part of greenhouse and the perimeter heat loss in the side edge of greenhouse are occurred, there is a difference depending on the size of greenhouse. Introducing the concept of heat loss through the perimeter of building and modified to reflect the size of greenhouse, the calculation method of ground heat exchange in greenhouses is considered appropriate. It was confirmed that the floor heat loss measured by using soil heat flux sensors increased linearly in proportion to the temperature difference between indoor and outdoor. We derived the reference temperature difference which change the direction of ground heat flow and the perimeter heat loss factor from the measured heat flux results. In the heating design of domestic greenhouses, reference temperature differences are proposed to apply $12.5{\sim}15^{\circ}C$ in small greenhouses and around $10^{\circ}C$ in large greenhouses. Perimeter heat loss factors are proposed to apply $2.5{\sim}5.0W{\cdot}m^{-1}{\cdot}K^{-1}$ in small greenhouses and $7.5{\sim}10W{\cdot}m^{-1}{\cdot}K^{-1}$ in large greenhouses as design standard data.

A Study on the Characteristics of Heat Flux on the Floor in a Compartment Fire (화재실 화재에서 바닥면의 열유속 특성연구)

  • Kim, Sung-Chan;Ko, Gwon-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.231-234
    • /
    • 2010
  • 본 연구는 화재조건에 따른 화재실 바닥면에서의 열유속특성을 파악하기 위해 ISO-9705 표준화재실의 40% 축소모형공간에 대하여 화재실험을 수행하고 화재성상에 따른 열유속변화와 공간적 분포를 분석한다. 또한 모형실험에서 계측된 열유속을 Scaling Law를 적용하여 실규모 크기의 결과로 환산하고 이를 기존의 다른 연구결과와 비교분석함으로써 화재발생으로 인한 공간내 열유속의 축소법칙의 적용성을 파악하고자 한다. 실험에 사용된 연료는 천연가스, 메탄올, 에탄올, 헵탄, 톨로엔, 폴리스틸렌등이며 모형실험의 최대발열량은 450 kW 정도로 실규모로 환산시 약 4.4 MW이다. 실험결과 화재실바닥면의 열유속은 연층의 온도와 연료의 종류에 따라 차이를 보였으나 측정위치별 차이는 크지 않았으며 Scaling Law를 적용한 결과 화재실 상층부 온도가 약 $500{\sim}600^{\circ}C$ 정도에서 바닥면의 열유속은 약 $20kW/m^2$ 정도로 기존연구와 유사한 경향을 보였다. 본 연구는 화재공간 내 열유속 측정을 통해 전실화재로의 화재성장을 파악하고 화재실내부의 열적특성을 분석하기 위한 기초적인 자료를 제공하고자 한다.

  • PDF

Study on Analysis and Evaluation of Performance for Evacuated Tubular Solar Collector System (진공관형 태양열 집열장치의 성능평가 및 해석 연구)

  • Chun, Tae-Kyu;Ahn, Young-Chull
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2013
  • The thermal performance for test system with evacuated tubular solar collector is experimentally investigated to obtain the basis data for developing new type solar collector. For this purpose, the test system was designed using CATIA and then after being manufactured, the system was tested using evacuated tubular solar collector. Numerical analysis, furthermore, was performed using ANSYS Fluent V.13 for glass evacuated tubular solar collector. The results showed that as setting temperature difference(${\Delta}T$) of system was increased, total operating(working) time was almost same in all cases, even though operating count was decreased. The results of numerical analysis showed that as temperature of solar absorber in glass evacuated tubular solar collector was high, the drop-rate of temperature of center part was increased.

Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle (연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구)

  • Lee, Ho-Seong;Kim, Jung-Il;Won, Hun-Joo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.924-930
    • /
    • 2018
  • The objective of this study was to investigate heating performance characteristics of electric heat pump system in a fuel cell electric vehicle (FCEV). In order to analyze heating performance characteristics of electric heat pump system with plate-type heat exchanger using stack coolant to evaporate the refrigerant, R-134a, each component was installed and tested under various operating conditions, such as air inlet temperature of inner condenser and compressor speed. When the air inlet temperature of inner condenser was varied from $0.0^{\circ}C$ to $-20.0^{\circ}C$, heating capacity was not quite different due to similar temperature gap between inlet and outlet of inner condenser with electric-driven expansion valve (EEV). However, COP increased until certain EEV opening, especially under 45.0%, because of decreasing power consumption. According to the compressor speed variation from 2,000 to 4,000 RPM, heating capacity and COP were found to have opposite trend. In the future works, stack coolant conditions as the heat source for tested heat pump system were analyzed with respect to heating performance, such as heating capacity and COP.