• Title/Summary/Keyword: 차영상 분석

Search Result 1,119, Processing Time 0.024 seconds

The Cut Detection System using Sum of Square Difference of Color between frames of Video Image Data (동영상데이터의 프레임간 색상차의 자승합을 이용한 컷 검출시스템)

  • 김병철;정창렬;고진광
    • Journal of Internet Computing and Services
    • /
    • v.3 no.5
    • /
    • pp.51-62
    • /
    • 2002
  • The development of computer technology and the advancement of the technology of information and communications spread the technology of multimedia and increased the use of multimedia data with large capacity, Users can grasp the overall video data and they are able to play wanted video back. To grasp the overall video data it is necessary to offer the list of summarized video data information, In order to search video efficiently on index process of video data is essential and it is also indispensable skill, Therefore, this thesis suggested the effective method about the cut detection of frames which will become a basis of an index based on contents of video image data. This suggested method was detected as the unchanging pixel color intelligence value, classified into diagonal direction. Pixel value of color detected in each frame of video data is stored as A(i, j) matrix-i is the number of frames. j is an image height of frame. By using the stored pixel value as the method of sum of squared difference of color two frames I calculated a specified value difference between frames and detected cut quickly and exactly in case it is bigger than threshold value set in advance, To carry out on experiment on the cut detection of frames comprehensively, I experimented on many kinds of video. analyzing and comparing efficiency of the cut detection system.

  • PDF

A Development of a Automatic Detection Program for Traffic Conflicts (차량상충 자동판단프로그램 개발)

  • Min, Joon-Young;Oh, Ju-Taek;Kim, Myung-Seob;Kim, Tae-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.64-76
    • /
    • 2008
  • To increase road safety at blackspots, it is needed to develop a new method that can process before accident occurrence. Accident situation could result from traffic conflict. Traffic conflict decision technique has an advantage that can acquire and analyze data in time and confined space that is less through investigation. Therefore, traffic conflict technique is highly expected to be used in many application of road safety. This study developed traffic conflict decision program that can analyze and process from signalized intersection image. Program consists of the following functional modules: an image input module that acquires images from the CCTV camera, a Save-to-Buffer module which stores the entered images by differentiating them into background images, current images, difference images, segmentation images, and a conflict detection module which displays the processed results. The program was developed using LabVIEW 8.5 (a graphic language) and the VISION module library.

  • PDF

A Study on Interrelationship of Baby Cold Diseases Using Baby Face Image and Crying Analysis (소아 얼굴 영상 및 울음소리 분석을 통한 소아 감기 질환과의 상관성 연구)

  • Kim, Bong-Hyun;Lee, Se-Hwan;Ka, Min-Kyoung;Park, Sun-Ae;Cho, Dong-Uk;Oh, Won-Geun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.59-62
    • /
    • 2007
  • 태어나면서부터 건강에 대한 욕구는 현대 사회에서 많은 부분을 차지하게 된다. 물론 어려서부터의 건강관리가 건강 수명 연장은 물론 가장 기본적인 행복한 삶의 추구까지도 보장되고 있는 실정이다. 이를 위해 본 논문에서는 한의학에서 환자의 질병을 진단하기 위해 사용되고 있는 망진(望診)과 청진(聽診)의 이론적 근거를 바탕으로 소아 감기 질환에 대한 진단 시스템을 개발하고자 한다. 특히 소아감기는 일반적으로 제일 발병률이 높은 질환으로 얼굴 부위에 열을 동반한다는 것과 울음소리가 인체의 모든 조음기관과 연관되어 있다는 한의학적 이론을 기반으로 소아의 생체신호를 분석하여 소아 감기와의 상관성을 분석하고자 한다. 이를 위해 소아 감기 환자에 대한 1차 실험으로 얼굴 영상에서의 열 관련 여부에 대한 색상 분석을 행하였으며 2차 실험으로는 조음기관에 대한 성분음을 추출하는 스펙트럼 분석을 수행하였다. 이를 통해 정상 소아와 감기 질환을 앓고 있는 소아 환자간의 차이점을 추출하고자 한다.

Face Recognitions Using Centroid Shift and Neural Network-based Principal Component Analysis (중심이동과 신경망 기반 주요성분분석을 이용한 얼굴인식)

  • Cho Yong-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.715-720
    • /
    • 2005
  • This paper presents a hybrid recognition method of first moment of face image and principal component analysis(PCA). First moment is applied to reduce the dimension by shifting to the centroid of image, which is to exclude the needless backgrounds in the face recognitions. PCA is implemented by single layer neural network which has a teaming rule of Foldiak algorithm. It has been used as an alternative method for numerical PCA. PCA is to derive an orthonormal basis which directly leads to dimensionality reduction and possibly to feature extraction of face image. The proposed method has been applied to the problems for recognizing the 48 face images(12 Persons $\ast$ 4 scenes) of 64$\ast$64 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.

Scoring System to Predict Malignancy for MRI-Detected Lesions in Breast Cancer Patients: Diagnostic Performance and Effect on Second-Look Ultrasonography (유방암 환자의 MRI에서 발견된 병변의 악성 예측을 위한 점수체계: 진단적 능력과 이차 초음파 결정에 미치는 영향)

  • Young Geol Kwon;Ah Young Park
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.379-394
    • /
    • 2020
  • Purpose To design a scoring system to predict malignancy of additional MRI-detected lesions in breast cancer patients. Materials and Methods Eighty-six lesions (64 benign and 22 malignant) detected on preoperative MRI of 68 breast cancer patients were retrospectively included. The clinico-radiologic features were correlated with the histopathologic results using the Student's t-test, Fisher's exact test, and logistic regression analysis. The scoring system was designed based on the significant predictive features of malignancy, and its diagnostic performance was compared with that of the Breast Imaging-Reporting and Data System (BI-RADS) category. Results Lesion size ≥ 8 mm (p < 0.001), location in the same quadrant as the primary cancer (p = 0.005), delayed plateau kinetics (p = 0.010), T2 isointense (p = 0.034) and hypointense (p = 0.024) signals, and irregular mass shape (p = 0.028) were associated with malignancy. In comparison with the BI-RADS category, the scoring system based on these features with suspicious non-mass internal enhancement increased the diagnostic performance (area under the receiver operating characteristic curve: 0.918 vs. 0.727) and detected three false-negative cases. With this scoring system, 22 second-look ultrasound examinations (22/66, 33.3%) could have been avoided. Conclusion The scoring system based on the lesion size, location relative to the primary cancer, delayed kinetic features, T2 signal intensity, mass shape, and non-mass internal enhancement can provide a more accurate approach to evaluate MRI-detected lesions in breast cancer patients.

Video image analysis algorithms with happy emotion tree (영상 이미지 행복 감성 트리를 이용한 분석 알고리즘)

  • Lee, Yean-Ran;Lim, Young-Hwan
    • Cartoon and Animation Studies
    • /
    • s.33
    • /
    • pp.403-423
    • /
    • 2013
  • Video images of emotional happiness or unhappiness, stress or emotional division of tranquility in the form of a tree is evaluated by weighting. Representative evaluation of the video image brightness contrast sensitivity ratings 1 car happy, unhappy or nervous, calm and refined with two car dependency, sensitivity to visual images are separated. Emotion Recognition of four compared to the numerical data is measured by brightness. OpenCV implementation through evaluation graph the stress intensity contrast, tranquility, happiness, unhappiness with changes in the value of four, separated by sensitivity to computing. Contrast sensitivity of computing the brightness according to the input value 'unhappy' to 'happy' or 'stress' to 'calm' the emotional changes are implemented. Emotion computing the regularity of the image to calculate the sensitivity localized computing system can be controlled according to the emotion of the contrast value of the brightness changes are implemented. The future direction of industry on the application of emotion recognition will play a positive role.

Robust Outlier-Object Detection in Image Pairs Based on Variable Threshold Using Empirical Correction Constant (실험적 교정상수를 사용한 가변문턱값에 기초한 영상 쌍에서의 강인한 이상 물체 검출)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • By calculating the differences between two images, which are captured with the same scene at different time, we can detect a set of outliers, such as occluding objects due to moving vehicles. To reduce the influence from the different intensity properties of the images, a simple technique that reruns the regression, which is based on the polynomial regression model, is employed. For a robust detection of outliers, the image difference is normalized by the noise variance. Hence, an accurate estimate of the noise variance is very important. In this paper, using an empirically obtained correction constant is proposed. Numerical analysis using both synthetic and real images are also shown in this paper to show the robust performance of the detection algorithm.

A Study on Precision Rectification Technique of Multi-scale Satellite Images Data for Change Detection (변화탐지를 위한 인공위성영상자료의 정밀보정에 관한 연구)

  • 윤희천;이성순
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • Because satellite images include geometry distortions according to photographing conditions and sensor property, and their spatial and radiational resolution and spectrum resolution are different, it is so difficult to make a precise results of analysis. For comparing more than two images, the precise geometric corrections should be preceded because it necessary to eliminate systematic errors due to basic sensor information difference and non-systematic errors due to topographical undulations. In this study, we did sensor modeling using satellite sensor information to make a basic map of change detection for artificial topography. We eliminated the systematic errors which can be occurred in photographing conditions using GCP and DEM data. The Kompsat EOC images relief could be reduced by precise rectification method. Classifying images which was used for change detections by city and forest zone, the accuracy of the matching results are increased by 10% and the positioning accuracies also increased. The result of change detection using basic map could be used for basic data fur GIS application and topographical renovation.

Non-rigid Registration Method of Lung Parenchyma in Temporal Chest CT Scans using Region Binarization Modeling and Locally Deformable Model (영역 이진화 모델링과 지역적 변형 모델을 이용한 시간차 흉부 CT 영상의 폐 실질 비강체 정합 기법)

  • Kye, Hee-Won;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.700-707
    • /
    • 2013
  • In this paper, we propose a non-rigid registration method of lung parenchyma in temporal chest CT scans using region binarization modeling and locally deformable model. To cope with intensity differences between CT scans, we segment the lung vessel and parenchyma in each scan and perform binarization modeling. Then, we match them without referring any intensity information. We globally align two lung surfaces. Then, locally deformable transformation model is developed for the subsequent non-rigid registration. Subtracted quantification results after non-rigid registration are visualized by pre-defined color map. Experimental results showed that proposed registration method correctly aligned lung parenchyma in the full inspiration and expiration CT images for ten patients. Our non-rigid lung registration method may be useful for the assessment of various lung diseases by providing intuitive color-coded information of quantification results about lung parenchyma.

A Study on Numeral Speech Recognition Using Integration of Speech and Visual Parameters under Noisy Environments (잡음환경에서 음성-영상 정보의 통합 처리를 사용한 숫자음 인식에 관한 연구)

  • Lee, Sang-Won;Park, In-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • In this paper, a method that apply LP algorithm to image for speech recognition is suggested, using both speech and image information for recogniton of korean numeral speech. The input speech signal is pre-emphasized with parameter value 0.95, analyzed for B th LP coefficients using Hamming window, autocorrelation and Levinson-Durbin algorithm. Also, a gray image signal is analyzed for 2-dimensional LP coefficients using autocorrelation and Levinson-Durbin algorithm like speech. These parameters are used for input parameters of neural network using back-propagation algorithm. The recognition experiment was carried out at each noise level, three numeral speechs, '3','5', and '9' were enhanced. Thus, in case of recognizing speech with 2-dimensional LP parameters, it results in a high recognition rate, a low parameter size, and a simple algorithm with no additional feature extraction algorithm.

  • PDF