• Title/Summary/Keyword: 차수벽 강도

Search Result 20, Processing Time 0.022 seconds

Engineering Properties of CB Cut-off Walls Mixed with GGBS (고로슬래그 미분말을 혼합한 CB 차수벽의 공학적 특성)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • For a slag-cement-bentonite (slag-CB) cut-off wall, GGBS replaces a part of the cement mixed to build a CB cut-off wall, which is used to block the flow and leakage of pollutants or groundwater; prevent seawater infiltration; and repair or reinforcement an aged embankments. Slag-CB cut-off walls are used in various applications in different fields where groundwater control is required due to its excellent characteristics. Such properties include high strength, low permeability, high durability and chemical resistance. However, despite these advantages, slag-CB cut-off walls are not extensively studied in Korea and thus are not applied in many cases. Particularly, GGBS, which replaces cement in a mixture, has different properties depending on its country of production. Consequently, it is necessary to perform various studies on slag-CB cut-off walls that use GGBS produced in Korea in order to increase its usability. This study has evaluated the bleeding rate, setting time, strength, and permeability in relation to the cement replacement rate of GGBS produced in Korea for slag-CB cut-off walls, with the aim to increase its usability. The evaluation found that slag-CB cut-off walls, made of a mixture containing GGBS produced in Korea, have a lower bleeding rate and permeability, and higher strengththan CB cut-off walls. It was also analyzed that such improved performance is more effective with a higher cement replacement rate of GGBS.

Soil-Cement를 이용한 지하댐 차수벽 재료의 강도 특성 평가

  • Im Eun-Sang;Seo Min-U;Kim Hyeong-Su;Sin Dong-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.228-231
    • /
    • 2005
  • 본 연구는 지하수를 생활용수로 활용하기 위한 시설물로 검토되고 있는 지하댐을 건설함에 있어 유력한 공법으로 제안되고 있는 SCW(Soil Cement Wall) 차수벽 설계지침을 마련하기 위하여 수행된 시험결과이다. 실험을 통해 SCW 각 혼합재료의 함유율에 따른 일축압축강도와 차수벽체의 강성을 나타내는 평균탄성계수를 산정하였으며, 혼합재료의 함유율과 양생조건을 조절하면 지하댐과 같은 구조물에 최적의 조건이라고 할 수 있는 고강도 저강성 벽체의 구현이 가능하다는 것을 확인하였다.

  • PDF

Enhanced Durability Performance of Rock-Filled-Dam Face-Slab Concrete using Fly Ash and Blended PVA Fiber (플라이애시와 PVA 섬유를 혼입한 댐 표면 차수벽 콘크리트의 내구성능 평가)

  • Woo, Sang-Kyun;Won, Jong-Pil;Bae, Doo-San;Chu, In-Yeop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.140-148
    • /
    • 2016
  • This study examined the durability of face-slab concrete in Concrete-Faced Rock-filled Dams(CFRDs). The durability of face-slab concrete can be improved by optimizing the amount of fly ash in the cement mixture. Durability tests including plastic shrinkage, permeability, abrasion resistance, and repeated freezing and thawing were done on face-slab concrete specimens with different amounts of fly ash and blended PVA(Poly Vinyl Alcohol) fibre. When the effect of the fly ash content on concrete durability was evaluated, the results showed that a 15% fly ash content and 0.1% blended PVA fiber yielded the optimum durability level for concrete-faced rock-filled dams.

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

Compaction Characteristics of Zone-1 Material in Concrete Faced Rockfill Dam (콘크리트 표면 차수벽형 석괴댐의 Zone-1재료에 대한 다짐특성)

  • Yea, Geu-Guwen;Han, Sang-Hyun;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Bedding zone in CRFD (Concrete Faced Rockfill Dam) requires bearing capacity to support the concrete face slab uniformly. Also, shear strength which is a key factor in slope stability and impermeability which is to prevent a loss of soils in case of leakage of concrete slab face are needed. In this study, trial prototype construction for bedding zone in CRFD was performed to investigate the compaction characteristics of bedding zone according to the frequency of compaction, water contents and so on. As a results of series of field test, the compaction characteristics of bedding zone in CRFD was affected considerably by the depth of compaction layer and frequency of compaction.

  • PDF

Compressive Behavior of Reinforced Nylon Fiber Slag-CB (나일론 섬유 보강 Slag-CB의 압축거동 특성)

  • Younkyoung Lee;Taeyeon Kim;Jongkyu Lee;Youngsoo Joo;Bongjik Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.5-10
    • /
    • 2023
  • Slag-CB is widely used in various fields that require groundwater control. It is a type of CB where a portion of the cement mixed with CB is replaced with GGBS. In general, Slag-CB has the advantage of long-term improvement in compressive strength, permeability, durability, and chemical resistance as the GGBS replacement ratio increases. However, there are problems such as decreased flexibility and resistance to deformation of the cut-off walls, as well as brittleness upon failure. To address these problems, some quality standards recommend designing Slag-CB with lower strength, which makes it challenging to apply high-strength Slag-CB with a high GGBS replacement ratio in the field.In this study, we aimed to improve the flexibility and resistance to deformation of Slag-CB to prevent brittle failure and improve the field applicability of Slag-CB. To achieve this, we evaluated the compressive behavior of nylon fiber-reinforced Slag-CB and proposed measures for enhancing the flexibility and resistance to deformation of Slag-CB.

Experimental Study on Freezing Soil Barrier Wall for Contaminant Transfer Interception (오염물질 이동 차단을 위한 동결차수벽 형성에 관한 실험적 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • The purpose of this study was to prevent spreading of contaminants from movement of underground water by creating a barrier using artificial freezing method on a soil contaminated by oils and various DNAPLs. Specimens with 80% and 90% degrees of saturation were prepared to form freezing barrier using artificial freezing method. As the results of freezing specimen within soil bin with artificial ground freezing system, artificial contaminated soil cut off wall formed the thinnest wall after 12 hours. It is judged that this cut off wall will control the second soil pollution by intercepting expansion and movement of pollutants and DNAPLs within artificial contaminated soil cut off wall by underground water, intercepting inflow or outflow of underground water. Cut off walls formed by artificial ground freezing system had each other freezing speed according to degree of saturation.

Evaluation on Field Applicability of Cast-In-Place Pile using Surfactant Grout (계면활성제계 그라우트를 활용한 흙막이 벽체공법(CIP)의 현장 적용성 평가)

  • Do, Jinung;Kim, Hakseung;Park, Bonggeun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In case of underground construction affected by groundwater, CIP (Cast-In-Place Pile) method is generally used to resolve the geo-hydraulic problem. However, as this method has poor connectivity between piles, an auxiliary method for cut-off is needed in many cases. In this study, a new concept earth retaining wall method (H-CIP) with no auxiliary method, by using surfactant grout (Hi-FA) which improves antiwashout and infiltration ability, is introduced, and its field applicability is evaluated. CIP and H-CIP piles were installed with same ground conditions, and field and laboratory tests were conducted to verify the performance. As results, newly contrived H-CIP method shows higher field performance for cut-off and strength than conventional CIP method.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

A Study on the Impervious Effect of Middle Pressure Grouting Techniques in Using the Environmentally Friendly Impregnation Materials (친환경 주입재를 사용한 중압그라우팅 기법의 차수효과에 관한 연구)

  • Chun, Byung-Sik;Kim, Byung-Hong;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.25-31
    • /
    • 2006
  • This paper studies the field applicability of the Special Chemical grouting Method (SCM) in reinforcing and reducing permeability of the back of an existing continuous wall. SCM uses double rod which imposes intermediate pressure ($981{\sim}9,810kPa$) to disturb, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Uniaxial compression tests, test for chemical properties and fish poison test are performed. Test results indicate that the method results in higher durability, less leaching through the use of the environmentally friendly injection material and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.