• Title/Summary/Keyword: 차분진화 최적화

Search Result 31, Processing Time 0.022 seconds

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

Analysis for Applicability of Differential Evolution Algorithm to Geotechnical Engineering Field (지반공학 분야에 대한 차분진화 알고리즘 적용성 분석)

  • An, Joon-Sang;Kang, Kyung-Nam;Kim, San-Ha;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • This study confirmed the applicability to the field of geotechnical engineering for relatively complicated space and many target design variables in back analysis. The Sharan's equation and the Blum's method were used for the tunnel field and the retaining wall as a model for the multi-variate problem of geotechnical engineering. Optimization methods are generally divided into a deterministic method and a stochastic method. In this study, Simulated Annealing Method (SA) was selected as a deterministic method and Differential Evolution Algorithm (DEA) and Particle Swarm Optimization Method (PSO) were selected as stochastic methods. The three selected optimization methods were compared by applying a multi-variate model. The problem of deterministic method has been confirmed in the multi-variate back analysis of geotechnical engineering, and the superiority of DEA can be confirmed. DEA showed an average error rate of 3.12% for Sharan's solution and 2.23% for Blum's problem. The iteration number of DEA was confirmed to be smaller than the other two optimization methods. SA was confirmed to be 117.39~167.13 times higher than DEA and PSO was confirmed to be 2.43~6.91 times higher than DEA. Applying a DEA to the multi-variate back analysis of geotechnical problems can be expected to improve computational speed and accuracy.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

An Improved MAP-Elites Algorithm via Rotational Invariant Operator in Differential Evolution for Continuous Optimization (연속 최적화를 위한 개선된 MAP-Elites 알고리즘)

  • Tae Jong Choi
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.129-135
    • /
    • 2024
  • In this paper, we propose a new approach that enhances the continuous optimization performance of the MAP-Elites algorithm. The existing self-referencing MAP-Elites algorithm employed the "DE/rand/1/bin" operator from the differential evolution algorithm, which, due to its lack of rotational invariance, led to a degradation in optimization performance when there were high correlations among variables. The proposed algorithm replaces the "DE/rand/1/bin" operator with the "DE/current-to-rand/1" operator. This operator, possessing rotational invariance, ensures robust performance even in cases where there are high correlations among variables. Experimental results confirm that the proposed algorithm performs better than the comparison algorithms.

Optimal Economical Running Patterns Based on Fuzzy Model (철도차량을 위한 퍼지모델기반 최적 경제운전 패턴 개발)

  • Lee, Tae-Hyung;Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.594-600
    • /
    • 2006
  • The optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model has been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme ate utilized, respectively. As a result, two meta-models for trip time and energy consumption are constructed. The optimization to search an economical running pattern is achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

Bargaining Game using Artificial agent based on Evolution Computation (진화계산 기반 인공에이전트를 이용한 교섭게임)

  • Seong, Myoung-Ho;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.293-303
    • /
    • 2016
  • Analysis of bargaining games utilizing evolutionary computation in recent years has dealt with important issues in the field of game theory. In this paper, we investigated interaction and coevolution process among heterogeneous artificial agents using evolutionary computation in the bargaining game. We present three kinds of evolving-strategic agents participating in the bargaining games; genetic algorithms (GA), particle swarm optimization (PSO) and differential evolution (DE). The co-evolutionary processes among three kinds of artificial agents which are GA-agent, PSO-agent, and DE-agent are tested to observe which EC-agent shows the best performance in the bargaining game. The simulation results show that a PSO-agent is better than a GA-agent and a DE-agent, and that a GA-agent is better than a DE-agent with respect to co-evolution in bargaining game. In order to understand why a PSO-agent is the best among three kinds of artificial agents in the bargaining game, we observed the strategies of artificial agents after completion of game. The results indicated that the PSO-agent evolves in direction of the strategy to gain as much as possible at the risk of gaining no property upon failure of the transaction, while the GA-agent and the DE-agent evolve in direction of the strategy to accomplish the transaction regardless of the quantity.

A study on the optimization technique for the plan of slope reinforcement arrangement of soil-nailing in tunnel portal area (터널 갱구사면 쏘일네일링 보강배치계획을 위한 최적화기법 연구)

  • Kim, Byung-Chan;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.569-579
    • /
    • 2016
  • In order to ensure the stability of tunnel portal slope, reinforcement method such as anchors, soil nails and rock bolts have been used in Korea. When selecting slope reinforcement methods in tunnel portal area such as reinforcement arrangement and length, trial and error method can be very time-consuming and it was also not easy to verify the selection of an optimum condition. In this study, using the FISH language embedded in the finite difference code FLAC3D program, the optimization technique was developed with the Differential Evolution Algorithm (DEA). After building a database on the soil nailing method in tunnel portal area, this system can be selected to an optimum arrangement plan based on the factor of safety through the FLAC3D analysis. Through the results of numerical analysis, it was confirmed that the number of analysis was decreased by about 8 times when DEA based optimization technique was used compared to the full combination (FC). In case of the design of slope reinforcement in tunnel portal area, if this built-system is used, it is expected that the selection of an optimum arrangement plan can be relatively easier.