• Title/Summary/Keyword: 차분부호정보량

Search Result 2, Processing Time 0.014 seconds

A Bitrate Control considering Interframe Variance of Image for H.264/AVC (화면간 영상 변화량을 고려한 H.264/AVC 비트율 제어 방법)

  • Son Nam-Rye;Lee Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.245-254
    • /
    • 2006
  • In this work, a new rate control algorithm for transmission of H.264/AVC video bit stream through CBR(constant bit rate) channel is proposed. The proposed algorithm predicts target bit rate and MAD(mean of absolute difference) for current frame considering image complexity variance between neighboring backward and current images. In details, respective linear regression analysis for MAD and encoded bit rate against image complexity variance produce correlation parameters. Additionally, it uses frame skip technique to maintain bit stream within a manageable range and protect buffer from overflow or underflow. Implementation and experimental results show that the proposed algorithm can provide accurate bit allocation, and can effectively visual degradation after scene changes. Also our proposed algorithm encodes the video sequences with less frame skipping compared to the existing rate control for H.264/AVC.

Consecutive Difference Expansion Based Reversible DNA Watermarking (연속적 차분 확장 기반 가역 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.51-62
    • /
    • 2015
  • Of recent interests on high capacity DNA storage, DNA watermarking for DNA copyright protection, and DNA steganography for DNA secret communication are augmented, the reversible DNA watermarking is much needed both to embed the watermark without changing the functionality of organism and to perfectly recover the host DNA sequence. In this paper, we address two ways of DE based reversible DNA watermarking using noncoding DNA sequence. The reversible DNA watermarking should consider the string structure of a DNA sequence, the organism functionality, the perfect recovery, and the high embedding capacity. We convert the string sequence of four characters in noncoding region to the decimal coded values and embed the watermark bit into coded values by two ways; DE based multiple bits embedding (DE-MBE) using pairs of neighbor coded values and consecutive DE-MBE (C-DE-MBE). Two ways process the comparison searching to prevent the false start codon that produces false coding region. Experimental results verified that our ways have more high embedding capacity than conventional methods and produce no false start codon and recover perfectly the host sequence without the reference sequence. Especially C-DE-MBE can embed more high two times than DE-MBE.