• Title/Summary/Keyword: 차로변경

Search Result 91, Processing Time 0.024 seconds

A Case Study of Minimizing Construction Time in Long and Large Twin Tube Tunnel (대단면 장대터널 공기단축 사례연구)

  • No Sang-Lim;Noh Seung-Hwan;Lee Sang-Pil;Kim Moon-Ho;Seo Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.177-184
    • /
    • 2005
  • The Sapaesan tunnel, the longest twin tube tunnel (4km) in Korea with 4 lanes each, is under construction with two years of delayed schedule because of the strong opposition from environmental bodies. Therefore, maximizing the construction efficiency was needed in tunnel project to compensate for time delay. This study includes improvements in the construction of the Sapaesan tunnel such as increasing excavation length and changing excavation sequence. In this paper the system for predicting tunnel face ahead is also introduced. Bulk-Emulsion explosive and Cylinder-Cut method were adopted in tunnel blasting to increase the excavation length. Optimum tunnel excavation step was designed to make up delayed time. Tunnel foe mapping, TSP survey and geological prediction system using computerized jumbo-drill were performed fnr safe construction of long and large twin tube tunnel.

Development of welding process to overcome misalignment in root pass at butt joint TIG welding of Stainless Steel (스테인리스강 TIG 맞대기 용접 루트 패스에서 단차 극복을 위한 공정 개발)

  • Im, Sung-Bin;Ham, Hyo-Sik;Ha, Jong-Moon;Seo, Ji-Suk;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.26-26
    • /
    • 2009
  • TIG 용접은 고품질이고 용접인자의 제어가 쉽고 정확하다는 장점이 있지만, 얕은 용입과 낮은 생산성과 같은 단점이 있다. TIG 오비탈 용접에서는 용입의 한계 때문에 작은 루트면과 넓은 그루브를 가공하여 다층 용접을 하며, 루트패스에서는 파이프 진원도에 의한 핏업 시 단차의 문제가 자주 발생하여 많은 현장에서 루트갭을 만들어 수동 용접하는 실정이다. 따라서 생산성이 낮으며 생산 단가가 높고 용접 품질이 작업자에 따라 다르게 된다. 이러한 문제점을 해결하여 자동 오비탈 용접을 위해 단차를 흡수 할 수 있는 용접 공정 개발이 필요하다. 본 연구의 목적은 TIG 용접에서 단차에 따른 용접성을 검토하여 이를 맞대기 용접에 적용했을 때 균일한 이면비드를 얻는 공정을 개발하는 것이다. 따라서 본 연구는 아래보기 자세에서 단차에 따른 용입 특성을 이면비드 및 단면으로 비교 분석하였다. 단차 없이 아크길이만 1mm, 2mm, 3mm로 변경하여 실험한 결과 아크길이가 짧아질수록 표면비드 폭은 좁아졌고 이면비드 폭은 증가하는 경향을 나타내어 아크길이가 짧아질수록 용융효율이 증가하는 것을 확인하였다. 단차 1mm에서 아크길이 3mm를 제외하고 표면비드 및 이면비드가 미려하였다. 하지만 단차 2mm에서는 아크길이 1mm, 2mm, 3mm 전부 이면비드가 생성되지 않았다. 이는 단차로 인해 아크길이가 증가하여 용융효율이 낮아졌기 때문이라 판단된다. 이면비드가 생성되지 못한 시험편을 백 베벨링(0.5mm, 1.0mm, 1.5mm, 2.0mm)하여 실험한 결과 단차 2mm, 아크길이 1-3mm 백 베벨링 2.0mm 적용한 시험편에서 양호한 이면비드를 얻을 수 있었다.

  • PDF

A Safety Analysis Based on Evaluation Indicators of Mixed Traffic Flow (혼합 교통류의 적정 평가지표 기반 안전성 분석)

  • Hanbin Lee;Shin Hyoung Park;Minji Kang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.42-60
    • /
    • 2024
  • This study analyzed the characteristics of mixed traffic flows with autonomous vehicles on highway weaving sections and assessed the safety of vehicle-following pairs based on surrogate safety indicators. The intelligent driver model (IDM) was utilized to emulate the driving behavior of autonomous vehicles, and the weaving sections were divided into lengths of 300 and 600 meters for analysis within a micro-traffic simulation (VISSIM). Although significant differences were found in the average speed, density, and headway between the two sections through t-test results, no significant differences were observed when comparing the number of conflicts per indicator and the vehicle-following pair. Four safety indicators were selected for the mixed traffic evaluation based on their ability to represent risk levels similar to those perceived by drivers. The safety analysis, based on the selected four indicators, determined that autonomous vehicles following other autonomous vehicles were the safest pairing. Future research should focus on integrating these indicators into a single comprehensive index for analysis.

Automatic Frequency Conversion Algorithm for Vehicle Radio (차량 라디오 주파수 자동변환 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.939-944
    • /
    • 2014
  • Traffic accidents caused by the attention dispersion are increasing and the behavior of the attention dispersion affects the front-observing rate, road keeping ability, and reaction time for a dangerous situation. Many drivers listen to a radio broadcast and they have to change the frequency for continuously listening a radio broadcast of the specific broadcasting station in case of crossing a boundary of the particular area. In this situation, the possibility of a car accident increases, because the attention dispersion of a driver might be occurred. Especially, the risk of a car accident caused by changing the frequency of a radio is more serious in the highway, due to the high speed of a vehicle. In order to reduce the risk of a car accident caused by handling a radio during driving car, in this paper, we propose an automatic frequency conversion algorithm for vehicle radio, which saves normal system frequencies of primary broadcasting stations in a database and determines new frequency of the changed area using the location information obtained from a navigation system in a boundary of the specific area. After determining new frequency, the proposed algorithm selects a frequency with better receiving rate comparing signal-to-noise ratios (SNRs) of two signals corresponding previous and new frequencies.

A Study on Signal Processing of Rear Radars for Intelligent Automobile (지능형 차량을 위한 후방 감시용 레이더 신호 처리 기법에 관한 연구)

  • Choi, Gak-Gyu;Han, Seung-Ku;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper introduces a radar signal processing technique for intelligent rear view monitoring of an automobile. The linear frequency modulation-frequency shift keying(LFM-FSK) waveform, which is the combination of frequency modulation continuous wave(FMCW) and frequency shift keying(FSK) waveform, is employed to simultaneously estimate the range, relative aspect angle, and velocity of an automobile. Hence, it can be applied to monitor the rear view of an automobile. FMCW waveform has high range resolution capability, but it produces ghost targets under a multiple target environment. In contrast, FSK waveform can provide high velocity resolution and avoids the problem of ghost targets. However, it fails to identify multiple targets along the radar's line of sight. With LFM-FSK waveform, we can estimate the ranges and velocities of multiple targets with very high resolution, which avoids the ghost target problem of an FMCW waveform. Simulation result shows that LFM-FSK wavefrom is suitable for use in the lane change assistance system for an automobile.

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

The Hazardous Expressway Sections for Drowsy Driving Using Digital Tachograph in Truck (화물차 DTG 데이터를 활용한 고속도로 졸음운전 위험구간 분석)

  • CHO, Jongseok;LEE, Hyunsuk;LEE, Jaeyoung;KIM, Ducknyung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.160-168
    • /
    • 2017
  • In the past 10 years, the accidents caused by drowsy driving have occupied about 23% of all traffic accidents in Korea expressway network and this rate is the highest one among all accident causes. Unlike other types of accidents caused by speeding and distraction to the road, the accidents by drowsy driving should be managed differently because the drowsiness might not be controlled by human's will. To reduce the number of accidents caused by drowsy driving, researchers previously focused on the spot based analysis. However, what we actually need is a segment (link) and occurring time based analysis, rather than spot based analysis. Hence, this research performs initial effort by adapting link concept in terms of drowsy driving on highway. First of all, we analyze the accidents caused by drowsy in historical accident data along with their road environments. Then, links associate with driving time are analyzed using digital tachograph (DTG) data. To carry this out, negative binomial regression models, which are broadly used in the field, including highway safety manual, are used to define the relationship between the number of traffic accidents on expressway and drivers' behavior derived from DTG. From the results, empirical Bayes (EB) and potential for safety improvement (PSI) analysis are performed for potential risk segments of accident caused by drowsy driving on the future. As the result of traffic accidents caused by drowsy driving, the number of the traffic accidents increases with increase in annual average daily traffic (AADT), the proportion of trucks, the amount of DTG data, the average proportion of speeding over 20km/h, the average proportion of deceleration, and the average proportion of sudden lane-changing.

A Determination Model of the Data Transmission-Interval for Collecting Vehicular Information at WAVE-technology driven Highway by Simulation Method (모의실험을 이용한 WAVE기반 고속도로 차량정보 전송간격 결정 모델 연구)

  • Jang, Jeong-Ah;Cho, Han-Byeog;Kim, Hyon-Suk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.1-12
    • /
    • 2010
  • This paper deals with the transmission interval of vehicle data in smart highway where WAVE (Wireless Access for Vehicular Environments) systems have been installed for advanced road infrastructure. The vehicle data could be collected at every second, which is containing location information of the vehicle as well the vehicle speed, RPM, fuel consuming and safety data. The safety data such as DTC code, can be collected through OBD-II. These vehicle data can be used for valuable contents for processing and providing traffic information. In this paper, we propose a model to decide the collection interval of vehicle information in real time environment. This model can change the transmission interval along with special and time-variant traffic condition based on the 32 scenarios using microscopic traffic simulator, VISSIM. We have reviewed the transmission interval, communication transmission quantity and communication interval, tried to confirm about communication possibility and BPS, etc for each scenario. As results, in 2-lane from 1km highway segment, most appropriate transmission interval is 2 times over spatial basic segment considering to communication specification. In the future, if a variety of wireless technologies on the road is introduced, this paper considering not only traffic condition but also wireless network specification will be utilized the high value.

A Study on the Speed Change on the Arterial Road according to Traffic Volume and Speed Limit (교통량과 제한속도에 따른 간선도로 속도 변화에 관한 연구)

  • Shin, Eon-kyo;Kim, Ju-hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.149-161
    • /
    • 2022
  • Because the speed limit affects moving speed, it is closely related to traffic accidents as well as traffic flow. The existing speed limit calculation methods consider various engineering factors such as lanes, intersection spacing, driveways, crosswalks, 85 percentile speed, land uses, and roadway geometric characteristics etc. However, it can be said that the engineering analysis is insufficient because the traffic impact analysis considering traffic volume is not carried out. In addition, only 85 percentile speed, which is the spot speed, does not reflect the characteristics of the traffic flow on the road. In this paper, the effect of the speed limit change on the moving speed and the travel speed was analyzed in detail accordinr to the variation of intersection spacing and traffic volume. And by using the results, we proposed a speed limit calculation method that maintains the same service level as before the speed limit change, thereby increasing the speed improvement effect and reducing the difference between moving speed and travel speed. In addition, a variable speed limit operation method according to the change in traffic volume was also suggested. This method is expected to be effective in terms of safety by reducing the speed difference, which affects the severity of traffic accidents, while securing the speed improvement effect, and increasing the speed limit compliance rate of drivers by operating the speed limit that reflects the speed change due to the variation of traffic volume.