• Title/Summary/Keyword: 차량 GPS

Search Result 507, Processing Time 0.022 seconds

Analysis of wildlife-vehicle collisions and monitoring the movement of wildlife (야생동물-차량과의 충돌사고 발생위치분석과 도로주변에서 야생동물의 이동경로분석)

  • Jung, Bae-Dong;Kim, Dae-Hwan;Kim, Jong-Taek
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.401-409
    • /
    • 2010
  • From 2006 through 2007, the highest need for the most urgent attention in Gangwon-do Wild Animal Rescue Center was wildlifevehicle collisions (WVC). The Korean Ministry of Environment reported 6543 WVC's in 2005 and 5565 cases of WVC's in 2006. In this study, data from the Gangwon-do Wild Animal Rescue Center was utilized to analyze WVC incidents and the movement of wildlife near roadways in Korea. From 2006 through the first half of 2008, the portable GPS device recorded accident location of the injured wildlife. Attempts were made to track and monitor the movements of four raccoon dogs and five Korean water deers near the roads. One raccoon dog and one Korean water deer were successfully tracked and monitored. Their locations were transmitted to cell phones. The amount of WVC's was highest amongst the roads near the forests of Gangwon-do. The devices installed on the nearby roads did not protect the wildlife from WVC's. Results using the CDMA-type GPS collar showed that wildlife often crossed the road even with devices installed to prevent this from crossing roads. This research analyzed the behaviors of different wildlife animals and WVC's. New preventative measures need to be established to avoid roadkill. It is suggested that new streets be built or for an appropriate speed limit be implemented.

Positioning Method Using a Vehicular Black-Box Camera and a 2D Barcode in an Indoor Parking Lot (스마트폰 카메라와 2차원 바코드를 이용한 실내 주차장 내 측위 방법)

  • Song, Jihyun;Lee, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • GPS is not able to be used for indoor positioning and currently most of techniques emerging to overcome the limit of GPS utilize private wireless networks. However, these methods require high costs for installation and maintenance, and they are inappropriate to be used in the place where precise positioning is needed as in indoor parking lots. This paper proposes a vehicular indoor positioning method based on QR-code recognition. The method gets an absolute coordinate through QR-code scanning, and obtain the location (an relative coordinate) of a black-box camera using the tilt and roll angle correction through affine transformation, scale transformation, and trigonometric function. Using these information of an absolute coordinate and an relative one, the precise position of a car is estimated. As a result, average error of 13.79cm is achieved and it corresponds to just 27.6% error rate in contrast to 50cm error of the recent technique based on wireless networks.

A Location Recognition System of RFID Tag for Parking Control (주차관제를 위한 RFID 태그 객체의 위치 인식 시스템)

  • Kang, Ku-An;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • Recently route guiding system using GPS is spread widely. In the parking management system of complex mall, RFID is mainly used to control status of parking lots. However, in a case that a vehicle only with RFID tag enters into small market-populated district with service of parking lots, there is no parking route guiding system optimized with information of real tine status of parking lots and the system only with GPS can't provide a function of using real time status of parking lots. This paper proposes a location recognizing method of RFID tag object for parking control system to integrated several parking lots in the business district and database-linked route guiding system optimized for parking. The proposed location recognizing method makes the search of optimized parking route possible by abstracting decoding order of tag and antenna number and recognizing direction of tag linked with database. Ihe implemented system that is composed of RFID tag, reader, middleware, server, parking lot clients and mobile clients shows that the proposed method works well and it will be useful for integrated parking control system.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

VLC Based Positioning Scheme in Vehicle-to-Infra(V2I) Environment (차량-인프라간 가시광 통신 기반 측위 기술)

  • Kim, Byung Wook;Song, Deok-Weon;Lee, Ji-Hwan;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.588-594
    • /
    • 2015
  • Although GPS technology for location positioning system has been widely used, it is difficult to be used in intelligent transport systems, due to the large positioning error and limited area for receiving radio signals. Thanks to the rapid development of LED technology, LED lights become popular in many applications. Especially, visible light communications (VLC) has raised a lot of interests because of the simultaneous functioning of LED illumination and communication. Recent studies on positioning system using VLC mainly focused on indoor environments and still difficult to satisfy positioning accuracy and simple implementation simultaneously. In this paper, we propose a positioning system based on VLC using the coordinate information of LEDs installed on the road infrastructure. Extracting the LED signal, obtained through VLC, from the easily accessible camera image, it is possible to estimate the position of the car on the road. Simulation results show that the proposed scheme can achieve a high positioning accuracy of 1 m when large number of pixels is utilized and the distance from the LED light is close.

The Tunnel Lane Positioning System of a Autonomous Vehicle in the LED Lighting (LED 조명을 이용한 자율주행차용 터널 차로측위 시스템)

  • Jeong, Jae hoon;Lee, Dong heon;Byun, Gi-sig;Cho, Hyung rae;Cho, Yoon ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.186-195
    • /
    • 2017
  • Recently, autonomous vehicles have been studied actively. There are various technologies such as ITS, Connected Car, V2X and ADAS in order to realize such autonomous driving. Among these technologies, it is particularly important to recognize where the vehicle is on the road in order to change the lane and drive to the destination. Generally, it is done through GPS and camera image processing. However, there are limitations on the reliability of the positioning due to shaded areas such as tunnels in the case of GPS, and there are limitations in recognition and positioning according to the state of the road lane and the surrounding environment when performing the camera image processing. In this paper, we propose that LED lights should be installed for autonomous vehicles in tunnels which are shaded area of the GPS. In this paper, we show that it is possible to measure the position of the current lane of the autonomous vehicle by analyzing the color temperature after constructing the tunnel LED lighting simulation environment which illuminates light of different color temperature by lane. Based on the above, this paper proposes a lane positioning technique using tunnel LED lights.

Network-RTK GNSS for Land Vehicle Navigation Application (Network-RTK GPS 기반 자동차 정밀 위치 추정)

  • Woon, Bong-Young;Lee, Dong-Jin;Lee, Sang-sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.424-431
    • /
    • 2017
  • These days land vehicle navigation system is a subject of great interest. The GNSS(Global Navigation Satellite System) is the most popular technology for out door positioning. However, The GNSS is incapable of providing high accuracy and reliable positioning. For that reason, we applied Network-RTK in vehicle to improve the accuracy of GNSS performance. In this network-RTK mode, the GNSS error are significantly decreased. In this paper, we explain ntrip client program for network-RTK mode and show the result of experiments in various environments.

Intelligent Logistics Management System using Smart Phones (스마트폰을 사용한 지능형 물류 관리 시스템)

  • Kim, Min-Su;Lee, Young-Jun;Kim, In-Woo;Chae, Jin-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.5-8
    • /
    • 2011
  • 기존의 물류 관리 시스템에서는 고객의 예상하지 못한 물류 수송 요청이 접수되면, 현재 진행하고 있는 물류 수송 상황에 대해 게시판에 메모를 하거나 관리자의 기억에 의존하여 계획을 수립하여 진행하고 있으며, 상황이 종료된 후에 수송 차량의 기사가 진행 상황을 회사에 보고하고 있다. 본 논문에서는 이러한 문제를 해결하기 위해 GPS 기능이 내장되어 있는 스마트 폰을 이용하여 차량과 화물의 부가적인 정보(위치, 물류의 상태 등)를 실시간 관리할 수 있도록 하고, 물류 수송 상에서 발생되는 데이터를 실시간으로 모니터링이 가능하도록 하였다. 그리고 관리자와 수송 기사간의 신속한 정보 전달을 통해 수송 계획을 최적화시켜 배송시 발생하는 비용 및 시간 문제에 대한 신속한 해결을 통해서 문제를 최소화할 수 있도록 하였다. 본 논문에서 제안한 시스템을 사용하게 되면 인적 물적 자원을 체계적으로 관리하여 적재적소에 분배함으로써, 이들의 활용성을 높일 수 있고 업무 효율을 극대화할 수 있다.

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.

A Control System for Avoiding Collisions between Autonomous Warfare Vehicles and Infantry (군용 무인차량과 보병의 충돌방지를 위한 제어시스템)

  • Nam, Sea-Hyeon;Chung, You-Chung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.74-82
    • /
    • 2011
  • This paper describes a control system for positioning the real-time locations of the autonomous warfare vehicles and infantry, and for avoiding collisions between them. The control system utilizes the low-cost RSSI (Received Signal Strength Indication) for positioning the locations of the wireless devices. The mathematical mean filtering processes are applied to the calculation of the RSS matrix to improve the performance for positioning the wireless devices in the multi-path propagation environment. A fuzzy rule is proposed to recover and replace the broken packets occurring in the wireless communication. The gradient and geometric triangulation algorithms are proposed to trace the real-time locations of wireless devices, based on the distances between them. The estimated location results of the geometric triangulation algorithm are compared with the results of the GPS and the gradient algorithm.