• Title/Summary/Keyword: 차량 주행 안정성

Search Result 185, Processing Time 0.026 seconds

Dynamic Analysis of an Automotive Suspension System with a 3-D Model (3차원 모델에 의한 차량 현가계의 동적해석)

  • 이재형;최영휴;이장무
    • Journal of the KSME
    • /
    • v.33 no.10
    • /
    • pp.856-860
    • /
    • 1993
  • 차량의 조종안정성을 해석하기 위해서는 차륜과 현가장치에 의한 비선형성과 조향장치의 동특성 등을 고려한 3차원 차량 모델을 이용하여 정상상태와 과도상태에서의 조향입력에 대한 차량 주 행역학을 해석하여야 한다. 승차감, 조향성능, 주행안정성 등의 동적성능과 현가장치의 특성관 계를 규명하기위하여 3차원 차량모델에 의한 해석과 설계변수에의 민감도 해석을 수행할 필요가 있다.

  • PDF

Numerical Analysis of the Roadbed Settlement beneath Rail Joint Induced by Tilting-Train Loading (틸팅차량 하중에 의한 레일 이음매 하부 노반침하에 대한 수치 해석적 분석)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min;Jung, Du-Hwoe;Han, Sung-Dae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.7-14
    • /
    • 2006
  • The tilting-train being operated in pre-existing rail road has a different running mechanism compared to currently operated trains. Therefore, it needs to investigate the evaluation of the track performance, the stability of the tilting-train in operating condition, and the stability of the roadbed. In this study, when the tilting train is operated in the rail joint with the allowable velocity limited by the track performance and the stability of the tilting-train, the settlement of the roadbed has been evaluated by using numerical analysis. The loading on the ground surface generated by the operating tilting-train generates the settlement of the roadbed. The settlement induced by the tilting-train loading has been compared to the allowable settlement and the factor of safety defined by the ratio of the allowable settlement to the settlement generated by the applied loading is evaluated.

A Study on the Evaluation of Curved Track to Speed Up of Railway Vehicle (고속열차 주행시 곡선부의 궤도성능평가)

  • Kang Yun-Suk;Kim Eun;Park Ok-Jung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.948-954
    • /
    • 2004
  • This study deals with the Evaluation of track system, when Newly developed Korea High Speed Train(KHST) by KRRI and KTX trains are running pass curved track of conventional line. In order to evaluate stability of track and vehicle running safety. the effect of curve radius, the field tests were performed at sharply curved track.

  • PDF

A Study on Driver-vehicle Interface for Cooperative Driving (협력운전을 위한 운전자-차량 인터페이스 연구)

  • Yang, In-Beom
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.27-33
    • /
    • 2019
  • Various technical and societal approaches are being made to realize the auto driving (AD) and cooperative driving (CD) including communication network and extended advanced driver support system is under development. In CD, it is important to share the roles of the driver and the system and to secure the stability of the driving, so a efficient interface scheme between the driver and the vehicle is required. This study proposes a research model including driver, system and driving environment considering the role and function of driver and system in CD. An efficient interface between the driver and the vehicle to cope with various driving situations on the CD using the analysis of the driving environment and the research model is also proposed. Through this study, it is expected that the proposed research model and interface scheme could contribute to CD system design, cockpit module development and interface device development.

Optimization of Characteristics of Longitudinal Creepage for Running Stability on Sharp Curved Track (급곡선 주행 안정화를 위한 주행방향 크리피지 특성 최적화 연구)

  • Sim, Kyung-Seok;Park, Tae-Won;Lee, Jin-Hee;Kim, Nam-Po
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Urban railway vehicles operate in downtown areas. Due to increases in the number of passengers and changes in the service plans, railway vehicles are expected to operate on sharp curved tracks. However, on these tracks, the running stability of the railway vehicles is significantly decreased and the creepage is increased. Creepage causes the wheel/rail to wear and vibration. Therefore, reducing the creepage helps ensure the running stability and can be beneficial for the environment and cost. In this paper, the longitudinal creepage is analyzed using a railway vehicle model on a sharp curved track. Furthermore, in order to minimize the problems when a railway vehicle runs on a sharp curved track, the characteristics of a bogie are optimized using response optimization.

Stability Evaluation of Track on Conventional Line According to Traveling Tilting Train (틸팅차량 주행에 따른 기존선 궤도의 주행안정성 평가)

  • Park, Yong-Gul;Eum, Ki-Young;Choi, Jung-Youl;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.701-708
    • /
    • 2007
  • A tilting train, which was developed to run the curve section without reducing the speed and compromising the riding quality, can improve the speed so as to reduce the travel time, compared to the existing trains. Then the force generated by the train operation to the track is in proportion to train operation speed, which means the track shall bear the increased force as much as the increase in train operation speed. Particularly, wheel load and lateral wheel load generated by train operation and distributed to the rail tend to cause the track to suffer the strain and furthermore the severe disaster such as derailment. To deal with such problem and ensure the train will run safety and stably, the tolerance in wheel load change, lateral wheel load and derailment coefficient was determined for quantitative evaluation of the train operation stability. In this study, derailment coefficient of inner and outer rail at existing curve section of tilting train was determined to evaluate the curve radius, possibility of acceleration and the need of rail improvement, which was then compared with the existing traditional train and high speed train. Conducting the quantitative evaluation of dynamic wheel load and lateral wheel load of each train, which was based on field survey, derailment coefficient and static & dynamic wheel load change, which serve the evaluation criteria of train operation stability, were determined for comparison with the standards, thereby analyzing the stability of the tilting train.

Estimation of the Roadbed Settlement and Bearing Capacity According to Radius of Curve and Cant in Railroad (철도의 곡선반경 및 캔트에 따른 노반의 침하 및 지지력 산정)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.29-38
    • /
    • 2007
  • The research on the track performance and stability of the tilting-train was performed and the settlement of the roadbed was estimated as the tilting train was being operated on the rail joint under the allowable velocity subjected to the track performance and the stability of the tilting-train. Since the impact on the continuous welded rail (CWR) induced by the tilting-train loading is different from the impact on the rail joint, it needs to investigate the settlement of the roadbed beneath the CWR. In this study, when the tilting-train is being operated on the CWR under the allowable velocity subjected to the track performance and the stability of the tilting-train, the settlement and bearing capacity of the roadbed beneath the CWR have been evaluated using numerical analysis and compared with those beneath the rail joint. The numerical results show that the settlements of the roadbed beneath CWR and rail joint are amount to 71.2% and 88.8% of the allowable settlement, respectively. And the stresses are amount to 10.4% and 12.1% of the allowable bearing capacity, respectively.

A Study on Stability Estimation of a Orchard Vehicle using Multi-Body Dynamic and Finite Element Analysis (다물체 동역학 및 유한요소 해석을 통한 과수원용 작업차량 안정성 평가에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan;Park, Kee-Jin;Jang, Eun-Sil;Woo, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4142-4148
    • /
    • 2013
  • Because of effective fruit growing and management in the slope land, the use of orchard vehicle with lifting utilities has been increased. For this reason the study on the stability of that vehicle for worker's safety is needed. This study is investigated on the stability estimation of orchard vehicle with four wheels and dual rectangular-type lifting utilities which can be moved on the dirt sloping load. Through the multi-body dynamics analysis on the vehicle mechanism, overturning angles of 19.2 and $34.6^{\circ}$ in the right-left and front-rear direction can be calculated. It is determined tractive resistances and required powers of the wheels. And through the finite element analysis on the frame of lifting utility its maximum von-Mises stress is 146 MPa and it is structural stable. Therefore it is known that the orchard vehicle with wheels and lifting utilities has static and dynamic stability.

Evaluation of Vehicle Stability Control System Using Driving Simulator (주행 시뮬레이터를 이용한 차량 안정성 제어기의 성능 검증)

  • 정태영;이건복;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2004
  • This paper presents human-in-the-loop evaluations of vehicle stability control(VSC) system using a driving simulator. A driving simulator which contains full vehicle nonlinear model is evaluated by using actual vehicle test data on the same driving conditions. Braking control inputs for Vehicle Stability Control system have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. Closed-loop simulation results at realistic driving situations have shown that the proposed controller reduces driving effort of a driver and enhances stability of a vehicle.

Study of Driving Stability Performance of 2-Wheeled Independently Driven Vehicle Using Electric Corner Module (전동 통합 샤시를 이용한 2륜 독립구동 차량의 선회성능 향상에 관한 연구)

  • Park, Jinhyun;Choi, Jeonghun;Song, Hyeonwoo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.937-943
    • /
    • 2013
  • An independently driven electric corner module cannot be applied to an actual vehicle without some difficulty, because of vehicle safety problems in the case of malfunctions and degraded ride and handling performance owing to the increase in the unsprung mass. In this study, a simulator is developed to evaluate the vehicle driving performance in order to solve ride and handling problems. Component modeling of a small-sized electric vehicle with an independently driven electric corner module is performed using MATLAB/Simulink. The vehicle is modeled by using CarSim, which can be used to analyze the vehicle maneuvers with 27 DOFs. The control algorithm for the improvement of vehicle driving safety and ride and handling performance is validated by using the developed simulator.