• Title/Summary/Keyword: 차량 종류

Search Result 358, Processing Time 0.021 seconds

A Study for determining the braked weight of Iran DMU using UIC 544-1 (UIC 544-1을 이용한 이란동차 Braked Weight 산출에 관한 연구)

  • Yun, Gi-Seok;Jeon, Woon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1624-1633
    • /
    • 2009
  • Brake system in railway train operates to reduce the speed of the train or to stop the train via changing the kinematic energy into heat energy for emission and so brake system makes an important rule to transport passenger and cargo for safety operation. Recently operators have a matter of grave concern for the verification of performance in brake system. To verify the exact performance of brake system, most of brake test has been carried out on real operating track condition. Therefore we will determine the braked weight of indirect brake system applied in Iran DMU(Diesel Multiple Unit) in accordance with mc leaflet 544-1, which is to enable Iran DMU to achieve the required braking distances in defined situation.

  • PDF

Analysis of Forwarding Schemes to Mitigate Data Broadcast Storm in Connected Vehicles over VNDN

  • Hur, Daewon;Lim, Huhnkuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.69-75
    • /
    • 2021
  • Limitation of the TCP/IP network technology included in the vehicle communication is due to the frequent mobility of the vehicle, the increase in intermittent connection requirements, and the constant presence of the possibility of vehicle hacking. VNDN technology enables the transfer of the name you are looking for using textual information without the need for vehicle identifiers like IP/ID. In addition, intermittent connectivity communication is possible rather than end-to-end connection communication. The data itself is the subject of communication based on name-based forwarding using two types of packets: Interest packet and Data packet. One of the issues to be solved for the realization of infotainment services under the VNDN environment is the traffic explosion caused by data broadcasting. In this paper, we analyze and compare the existing technologies to reduce the data broadcast storm. Through this, we derive and analyze the requirements for presenting the best data mitigation technique for solving the data explosion phenomenon in the VNDN environment. We expect this paper can be utilized as prior knowledge in researching improved forwarding techniques to resolve the data broadcast explosion in connected vehicles over NDN.

Deep Learning Based Emergency Response Traffic Signal Control System

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.121-129
    • /
    • 2023
  • In this paper, we developed a traffic signal control system for emergency situations that can minimize loss of property and life by actively controlling traffic signals in a certain section in response to emergency situations. When the emergency vehicle terminal transmits an emergency signal including identification information and GPS information, the surrounding image is obtained from the camera, and the object is analyzed based on deep learning to output object information having information such as the location, type, and size of the object. After generating information tracking this object and detecting the signal system, the signal system is switched to emergency mode to identify and track the emergency vehicle based on the received GPS information, and to transmit emergency control signals based on the emergency vehicle's traveling route. It is a system that can be transmitted to a signal controller. This system prevents the emergency vehicle from being blocked by an emergency control signal that is applied first according to an emergency signal, thereby minimizing loss of life and property due to traffic obstacles.

Spherical Point Tracing for Synthetic Vehicle Data Generation with 3D LiDAR Point Cloud Data (3차원 LiDAR 점군 데이터에서의 가상 차량 데이터 생성을 위한 구면 점 추적 기법)

  • Sangjun Lee;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.329-332
    • /
    • 2023
  • 3D Object Detection using deep neural network has been developed a lot for obstacle detection in autonomous vehicles because it can recognize not only the class of target object but also the distance from the object. But in the case of 3D Object Detection models, the detection performance for distant objects is lower than that for nearby objects, which is a critical issue for autonomous vehicles. In this paper, we introduce a technique that increases the performance of 3D object detection models, particularly in recognizing distant objects, by generating virtual 3D vehicle data and adding it to the dataset used for model training. We used a spherical point tracing method that leverages the characteristics of 3D LiDAR sensor data to create virtual vehicles that closely resemble real ones, and we demonstrated the validity of the virtual data by using it to improve recognition performance for objects at all distances in model training.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF

The Effect of the Gust of Wind on Safety of Driving Vehicles in Higher Speed Freeways (강한 바람이 고속도로 차량 주행 안전성에 미치는 영향 분석)

  • Kim, Sang-Youp;Choi, Jai-Sung;Hwang, Kyung-Sung;Hwang, Kyung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.45-54
    • /
    • 2009
  • Despite vehicle instability problems caused by gusts of wind on freeways located in mountain or seaside areas, current national highway design standards overlook their detrimental effects, and if higher design speed freeways being proposed now by the government are in operation, the strong effect of the gust of wind becomes a highway alignment design issue. This paper presents the vehicle movements and their resulting safety effects by checking vehicle sliding and overturn based on vehicle dynamic analysis for the case when a gust of wind blows to vehicles negotiating curves on higher speed freeways. In this analysis, vehicle types, curve radii, motorist responsive time to vehicle driving path changes, and vehicle speeds are systematically arranged to get vehicle sliding and overturn values in each different conditions. The results showed that there were little overturn possibilities when wind speed would stay in 50m/sec with higher than 600 meter curve radii. Interestingly it was also found in sliding checks that, although being safe at less than 15.0m/sec wind speed levels, there appeared the need of vehicle travel prohibitions when the wind speed could exceed 25.0m/sec level. The findings in this research is of information in future higher speed freeway designs, and particularly useful when designing freeways passing frequent gust wind areas.

  • PDF

Evaluation of Tractive Performance of an Underwater Tracked Vehicle Based on Soil-track Interaction Theory (궤도-지반 상호작용 이론을 활용한 해저궤도차량의 구동성능 평가)

  • Baek, Sung-Ha;Shin, Gyu-Beom;Kwon, Osoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.43-54
    • /
    • 2018
  • Underwater tracked vehicle is employed to perform underwater heavy works on saturated seafloor. When an underwater tracked vehicle travels on the seafloor, shearing action and ground settlement take place on the soil-track interface, which develops the soil thrust and soil resistance, respectively, and they restrict the tractive performance of an underwater tracked vehicle. Thus, unlike the paved road, underwater tracked vehicle performance does not solely rely on its engine thrust, but also on the soil-track interaction. This paper aimed at evaluating the tractive performance of an underwater tracked vehicle with respect to ground conditions (soil type, and relative density or consistency) and vehicle conditions (weight of vehicle, and geometry of track system), based on the soil-track interaction theory. The results showed that sandy ground and silty sandy ground generally provide sufficient tractions for an underwater tracked vehicle whereas tractive performance is very much restricted on clayey ground, especially for a heavy-weighted underwater tracked vehicle. Thus, it is concluded that an underwater tracked vehicle needs additional equipment to enhance the tractive performance on the clayey ground.

Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter (사이클론 전처리부를 지닌 터널집진차량의 집진효율 최적화)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.679-686
    • /
    • 2018
  • A new dust cleaning vehicle is needed to remove fine and ultra-fine particulate matter in subway tunnels. Therefore, the recently developed tunnel cleaning vehicle is equipped with an efficient suction system and cyclone-based prefilter to handle ultra-fine particles. To treat various sizes of particulate matter with an underbody suction system, this paper proposes a cyclone-based prefilter in the suction system and validates the dust removal efficiency through Computational Fluid Dynamics (CFD) analysis using ANSYS FLUENT. Using the created surface and volume mesh, various particle sizes, materials, and fan flow rates, the particles were tracked in the flow with a discrete phase model. As a result, the dust cleaning vehicle at a normal operational speed of 5km/h requires at least a fan flow rate of $1500m^3/min$ and 100mm of suction inlet height from the tunnel track floor. Those suction modules and cyclone-based prefilters in the dust cleaning vehicle reduces the dust accumulation load of the electric precipitator and helps remove the accumulated fine and ultra-fine dust in the subway tunnel.

Characteristic Analysis on Drivers' Glance Durations with Different Running Speeds on the Expressway (고속국도에서의 주행속도 차이에 따른 운전자 평균 주시시간 특성에 관한 연구)

  • Sim, Hyeon-Jeong;Do, Myung-sik;Chong, Kyu-soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2016
  • Drivers can receive diverse types of traffic information through a number of methods. However, there are not enough information services considering human factors. In this study, as a basic research on human factors of the drivers, characteristic analysis on drivers' mean glance (fixation) durations with different running speeds on the expressway was performed under diverse running environments. To control variables other than running speeds, running environments were categorized into 4 types: 'daytime running without preceding vehicles', 'daytime running with preceding vehicles', 'nighttime running without preceding vehicles', and 'nighttime running with preceding vehicles'. Furthermore, ANOVA Test was used to divide speed groups. As a result of performing a multiple comparison to compare differences in glance behavior per each group, the road item and the preceding vehicles item showed an increase in mean glance durations as the speed increased, while the front view showed a decrease in mean glance durations. It was confirmed that the road sign showed no statistically significant difference in glance durations as the speed varied.

Analysis of Rear-end Collision Risks Using Weigh-in-Motion Data (고속도로 Weigh-in-Motion(WIM) 이벤트 자료를 활용한 후미추돌 위험도 분석 기법)

  • Oh, Min Soo;Park, Hyeon Jin;Oh, Cheol;Park, Soon Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.152-167
    • /
    • 2018
  • The high-speed weigh-in-motion system can collect the traveling speed and load information of individual vehicles, which can be used in a variety of ways for the traffic surveillance. However, it has a limit to apply the high-speed weigh-in-motion data directly to a safety analysis because high-speed weigh-in-motion's raw data are point measured data. In order to overcome this problem, this paper proposes a method to calculate the conflict rate and the Impulse severity based on surrogate safety measures derived from the detection time, detection speed, vehicle length, vehicle type, vehicle weight. It will be possible to analyze and evaluate the risk of rear-end collision on freeway traffic. In addition, this study is expected to be used as a fundamental for identifying crash risks and developing policies to enhance traffic safety on freeways.