• Title/Summary/Keyword: 차량 전복 방지

Search Result 15, Processing Time 0.02 seconds

Design of a Robust Controller for Vehicle Rollover Prevention (차량 전복 방지를 위한 강인 제어기 설계)

  • Yim, Seong-Jin;Kim, Yong-Moo;Oh, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1311-1318
    • /
    • 2012
  • Vehicle systems are frequently exposed to parameter uncertainties such as vehicle speed and height of center of gravity. If a controller is designed to be robust against these parameter uncertainties, the rollover prevention capability can be considerably enhanced. In this study, robust controllers $H_2$ and $H_{\infty}$ are designed by using LMI for vehicle rollover prevention control in the discrete time domain. Some simulations using CarSim, a reliable simulation tool, are performed to validate the proposed controllers.

Design of Rollover Prevention Controller Using Game-Theoretic Approach (미분게임 이론을 이용한 차량 전복 방지 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1429-1436
    • /
    • 2013
  • This study presents an approach for designing a vehicle rollover prevention controller using differential game theory and multi-level programming. The rollover prevention problem can be modeled as a non-cooperative zero-sum two-player differential game. A controller as an equilibrium solution of the differential game guarantees the worst-case performance against every possible steering input. To obtain an equilibrium solution to the differential game with a small amount of computational effort, a multi-level programming approach with a relaxation procedure is used. To cope with the loss of maneuverability caused by the active suspension, an electronic stability program (ESP) is adopted. Through simulations, the proposed method is shown to be effective in obtaining an equilibrium solution of the differential game.

Unified Chassis Control to Prevent Vehicle Rollover (차량전복 방지를 위한 통합섀시제어)

  • Yoon, Jang-Yeol;Yi, Kyoung-Su;Cho, Wan-Ki;Kim, Dong-Shin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1132-1137
    • /
    • 2007
  • This paper describes a Unified Chassis Control (UCC) strategy to prevent vehicle rollover by integrating individual modular chassis control systems such as Electronic Stability Control (ESC) and Continuous Damping Control (CDC). The UCC threshold is determined from a rollover index computed by estimated roll angle, roll rate and measured lateral acceleration. A direct yaw moment control method is used to design the ESC based on a 2-D bicycle model. Similarly, the CDC is designed based on a 2-D roll model using a direct roll moment control method. The performance of the proposed UCC scheme is investigated and compared to that of modular chassis controllers through computer simulations using a validated vehicle simulator. It is shown that the proposed the UCC can lead to improvements in vehicle stability and efficient actuation of chassis control systems.

  • PDF

Caculating Ship Rudder Angle and Real-Time Mass Estimator Under Dynamic State (동적 상태의 선박 조향각 및 실시간 질량 추정 시스템)

  • Jin–hyuk Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.31-32
    • /
    • 2022
  • In Early vessels did not provide an exact equation for preventig the capsizing vessels. On land, many vehicle rollover prevention technologies using the steady-state Conrning Equations were developed, which showed better performance than the exiting method at sea. For better performance, It is proposed to improve safety mangement when turning vessel using the Ackerman geometic model-based Cornering Equations in this paper.

  • PDF

Development of Roll Stability Control of Commercial Vehicles with Environment Information (환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발)

  • Park, Dongwoo;Her, Hyundong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program (PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구)

  • Choi, Yong-Soon;Baek, Se-Ryong;Jung, Jong-Kil;Cho, Jeong-Kwon;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Along with the recent increase in traffic volume of vehicles, accidents involving rollover of vehicles have been rapidly increased, resulting in an increase casualties. And to prevent this, various technologies such as vehicle crash test equipment and analysis program development have been advanced. In this study, the applied vehicle model is FORD EXPLORER model, and PC-Crash program for vehicle collision analysis is used to predict the rollover accident behavior of SUV and the collision velocity. Compared with the actual rollover behavior of SUV through the FMVSS No 208 regulations, the analysis results showed similar results, the characteristics of the collision velocity and roll angle showed a tendency that the error rate slightly increased after 1000 msec. Then, as a result of considering using the database of NHTSA, it is shown that the rollover accident occur most frequently in the range of the collision velocity of 15~77 km/h and the collision angle of $22{\sim}74^{\circ}$. And it is possible to estimate the vehicle speed and collision time when the vehicle roof is broken by reconstructing the vehicle starting position, the roof failure position and the stop position by applying the actual accident case.

Real-Time Vehicle Mass Estimator for Active Rollover Prevention Systems (차량 전복 방지 장치를 위한 실시간 차량 질량 추정 시스템)

  • Han, Kwang-Jin;Kim, In-Keun;Kim, Seung-Ki;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Vehicle rollover is a serious kind of accident, particularly for sport utility vehicles, and its occurrence can be minimized by utilizing active rollover prevention systems. The performance of these protection systems is very sensitive to vehicle inertial parameters such as the vehicle's mass and center of mass. These parameters vary with the number of passengers and in different load situations. In this paper, a unified method for vehicle mass estimation is proposed that takes into account the available driving conditions. Three estimation algorithms are developed based on longitudinal, lateral, and vertical vehicle motion, respectively. Then, the three algorithms are combined to extract information on the vehicle's mass during arbitrary vehicle maneuvering. The performance of the proposed vehicle mass estimation method is demonstrated through real-time experiments.

Design of Static Output Feedback Controllers for Rollover Prevention (차량 전복 방지를 위한 정적 출력 피드백 제어기 설계)

  • Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • This paper presents static output feedback LQ and $H_{\infty}$ controllers for rollover prevention. Linear quadratic static output feedback controllers have been proposed for rollover prevention in such a way to minimize the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if $H_{\infty}$ controller is designed. To avoid full-state measurement for feedback requirement or sensitiveness of an observer to nonlinear model error, static output feedback is adopted. To design static output feedback controllers, Kosut's method is adopted because it is simple to calculate. Differential braking and active anti-roll bar are adopted as actuators that generate yaw and roll moments, respectively. The proposed method is shown to be effective in preventing rollover through the simulations on nonlinear multi-body dynamic simulation software, CarSim.

Posture Stabilization Algorithm of A Small Unmanned Ground Vehicle for Turnover Prevention (전복 방지를 위한 소형 무인주행로봇의 자세 안정화 알고리즘)

  • Koh, Doo-Yeol;Kim, Young-Kook;Lee, Sang-Hoon;Jee, Tae-Young;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.965-973
    • /
    • 2011
  • Small unmanned ground vehicles(SUGVs) are typically operational on unstructured environments such as crashed building, mountain area, caves, and so on. On those terrains, driving control can suffer from the unexpected ground disturbances which occasionally lead turnover situation. In this paper, we have proposed an algorithm which sustains driving stability of a SUGV as preventing from turnover. The algorithm exploits potential field method in order to determine the stability of the robot. Then, the flipper and manipulator posture of the SUGV is optimized from local optimization algorithm known as gradient descent method. The proposed algorithm is verified using 3D dynamic simulation, and results showed that the proposed algorithm contributes to driving stability of SUGV.

A Study on the Application of the Steering Control to Increase Roll Stiffness for the Relatively Tall Vehicles (무게중심이 높은 차량의 롤 강성계수 증대를 위한 스티어링 제어기법의 응용에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • For the high center of gravity vehicles the roll stiffness of their suspensions is arranged to be very high because such vehicles are in some danger of tipping over in cornering. In some cases, the effective roll stiffness is determined significantly by the compliance of the tires because of the very stiff anti-roll members incorporated in the suspension. In such cases, it is clear that the shock absorbers which may be effective in damping heave oscillations have little effect on roll oscillations. Therefore, wind gusts and roadway unevenness may cause large swaying oscillations. In this paper, to improve the stability for the high center of gravity vehicles a control scheme to augment the damping of the roll mode is proposed. As the feedback signals needed to provide damping of the roll motion, the front or rear steer angles or both are chosen because they are very related to roll motion. The scheme is effective from moderate to high speeds and stabilizes the roll mode without introducing disturbance moments from roadway unevenness as shock absorbers do. The validity on the proposed method is verified through the computer simulation.

  • PDF