• Title/Summary/Keyword: 차량 운전 시뮬레이터

Search Result 61, Processing Time 0.025 seconds

A Study on the Haptic Control Technology for Unmanned Military Vehicle Driving Control (무인차량 원격주행제어를 위한 힘반향 햅틱제어 기술에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kang, Seok-Won;Kim, Jae-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.910-917
    • /
    • 2018
  • This paper describes the developments to improve the feeling and safety of the remote control system of unmanned vehicles. Generally, in the case of the remote control systems, a joystick-type device or a simple steering-wheel are used. There are many cases, in which there are operations without considering the feedback to users and driving feel. Recently, as the application area of the unmanned vehicles has been extended, the problems caused by not considering the feedback are emphasized. Therefore, the need for a force feedback-haptic control arises to solve these problems. In this study, the force feedback-haptic control algorithm considering the vehicle parameters is proposed. The vehicle parameters include first the state variables of dynamics, such as the body side-slip angle (${\beta}$) and yawrate (${\gamma}$), and second, the parameters representing the driving situations. Force feedback-haptic control technology consists of the algorithms for general and specific situations, and considers the situation transition process. To verify the algorithms, a simulator was constructed using the vehicle dynamics simulation tool with CAN communication environment. Using the simulator, the feasibility of the algorithms was verified in various scenarios.

Development of a Washout Algorithm for a Vehicle Driving Simulator Using New Tilt Coordination and Return Mode (새로운 경사 변환과 복귀 성분을 고려한 차량 운전 시뮬레이터 워시아웃 알고리즘 개발)

  • 강유진;유기성;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.634-642
    • /
    • 2004
  • Unlike actual vehicles, a vehicle driving simulator is limited in kinematic workspace and bounded on dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model. In order to overcome these problems, a washout algorithm which controls the workspace of the simulator within the kinematic limitation is needed. However, a classical washout algorithm contains several problems such as generation of wrong sensation of motions by filters in tilt coordination, requirement of trial and error method in selecting the proper cut-off frequencies, difficulty in returning the simulator to its origin using only high pass filters and etc. This paper proposes a new tilt coordination method as an algorithm which gives more accurate sensations to drivers. In order to reduce time for returning the simulator to its origin, a new washout algorithm that the proposed algorithm selectively onset mode from high pass filters and return mode from error functions is proposed. As a result of this study, the results of the proposed algorithm are compared with the results of classical washout algorithm through the human perception models. Also, the performance of the suggested algorithm is evaluated by using human perception and sensibility of some drivers through experiments.

Behavioral Adaptation to an Adaptive Cruise Control System (적응순항제어시스템의 운전자 행동적응)

  • Lee, Woon-Sung;Kim, Young-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.82-88
    • /
    • 2006
  • The study investigated how an adaptive cruise control system induced behavioral adaptation in drivers using a full-scale driving simulator. Forty drivers with different driving styles participated in the study to compare headway-time, vehicle lateral position variation, and head and eye movement when driving with and without the adaptive cruise control system. Results showed that system induced positive behavioral adaptation by drawing consistency in driving speed and headway-time regardless of the driving styles. However, the results also showed that the drivers' reliance on the system induced negative adaptation including reduced lane keeping ability and reduced attention during driving. As a strategy to prevent negative adaptation, the study proposed information service to drivers with the adaptive cruise control system status and driving environment, and investigated effectiveness of the service. Twelve drivers participated in the experiment to compare headway-time, vehicle lateral position variation and subjective ratings when driving with and without the information service. Results showed that the information service assisted the drivers to maintain safer and more comfortable headway-time without impairing drivers' steering ability.

Motion and Image Matching Algorithms and Implementation for Motion Synchronization in a Vehicle Driving Simulator (차량 운전 시뮬레이터에서 모션과 영상의 동기화를 위한 알고리즘 및 구현 방안)

  • Kim, Hun-Se;Kim, Dae-Seop;Kim, Dong Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.184-193
    • /
    • 2017
  • This work shows how to create an algorithm and implementation for motion and image matching between a vehicle simulator and Unity 3D based virtual object. The motion information of the virtual vehicle is transmitted to the real simulator via a RS232 communication protocol, and the motion is controlled based on the inverse kinematics solution of the platform adopting rotary-type six actuators driving system. Wash-out filters to implement the effective motion of the motion platform are adopted, and thereby reduce the dizziness and increase the realistic sense of motion. Furthermore, the simulator system is successfully designed aiming to reducing size and cost with adaptation of rotary-type six actuators, real driving environment via VR (Virtual Reality), and control schemes which employ a synchronization between 6 motors and 3rd order motion profiles. By providing relatively big sense of motion particularly in impact and straight motions mainly causing simulator sickness, dizziness is remarkably reduced, thereby enhancing the sense of realistic motion.

A Study on Assessment of Vibration Serviceability of Highway Bridges Using Driving Simulator (주행 시뮬레이터를 활용한 운전자 중심의 교량 진동 사용성 평가기준 연구)

  • Oh, Jeong-Jae;Park, Jong-Sub;Sung, Ik-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1778-1784
    • /
    • 2010
  • This study investigates the criteria for assessing the vibration serviceability of highway bridges using advanced driving simulator. Reiher-Meister Curves were firstly reviewed for extended application to serviceability of highway bridges. Modified Reiher-Meister Curves were provided in this paper based on field test results and numerical analyses results. The Modified Reiher-Meister Curves were evaluated using advanced driving simulator. The new curve consisted of 4 level, A(Disturbing), B(Strongly perceptible), C(Allowable), and D(Comfortable). The new criteria will be extensively applied to design and maintain highway bridges with respect to driver condition.

Selection of Evaluation Metrics for Grading Autonomous Driving Car Judgment Abilities Based on Driving Simulator (드라이빙 시뮬레이터 기반 자율주행차 판단능력 등급화를 위한 평가지표 선정)

  • Oh, Min Jong;Jin, Eun Ju;Han, Mi Seon;Park, Je Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • Autonomous vehicles at Levels 3 to 5, currently under global research and development, seek to replace the driver's perception, judgment, and control processes with various sensors integrated into the vehicle. This integration enables artificial intelligence to autonomously perform the majority of driving tasks. However, autonomous vehicles currently obtain temporary driving permits, allowing them to operate on roads if they meet minimum criteria for autonomous judgment abilities set by individual countries. When autonomous vehicles become more widespread in the future, it is anticipated that buyers may not have high confidence in the ability of these vehicles to avoid hazardous situations due to the limitations of temporary driving permits. In this study, we propose a method for grading the judgment abilities of autonomous vehicles based on a driving simulator experiment comparing and evaluating drivers' abilities to avoid hazardous situations. The goal is to derive evaluation criteria that allow for grading based on specific scenarios and to propose a framework for grading autonomous vehicles. Thirty adults (25 males and 5 females) participated in the driving simulator experiment. The analysis of the experimental results involved K-means cluster analysis and independent sample t-tests, confirming the possibility of classifying the judgment abilities of autonomous vehicles and the statistical significance of such classifications. Enhancing confidence in the risk-avoidance capabilities of autonomous vehicles in future hazardous situations could be a significant contribution of this research.

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

Analysis of the Influence of Road·Traffic Conditions and Weather on the Take-over of a Conditional Autonomous Vehicle (도로·교통 조건 및 기상 상황이 부분 자율주행자동차의 제어권전환에 미치는 영향 분석)

  • Park, Sungho;Yun, YongWon;Ko, Hangeom;Jeong, Harim;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.235-249
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport established safety standards for Level 3 autonomous vehicles for the first time in the world in December 2019, and specified the safety standards for conditional autonomous driving systems. Accordingly, it is necessary to analyze the influence of various driving environments on take-over. In this study, using a driving simulator, we investigated how traffic conditions and weather conditions affect take-over time and stabilization time. The experimental procedure was conducted in the order of preliminary training, practice driving, and test driving, and the test driving was conducted by dividing into a traffic density and geometry experiment and a weather environment experiment. As a result of the experiment, it was analyzed that the traffic volume and weather environment did not affect the take-over time and take-over stabilization time, and only the curve radius affects take-over stabilization time.

Safe Driving Inducement Effect Analysis of Smart Delineator through Driving Simulation Evaluation (도로 주행 시뮬레이션 평가를 통한 스마트 델리네이터의 안전운전 유도 효과분석)

  • Ko, Han-Geom;Kim, Ji-Ho;Seong, Myung-Jae;Lee, Jin-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.4
    • /
    • pp.43-59
    • /
    • 2012
  • Assuming a completed Smart Highway road & communication environment that allows real-time information collection and transmission of road traffic condition ahead, the purpose of this study is to develop a plan for inducing a network-level safe driving pattern by providing road traffic condition and safety information to multiple drivers through a road information provision device. In this study, the device with a function that displays different colors according to the hazard level to the existing delineator has been named 'Smart Delineator'. Smart Delineator is a device that provides not only alignment information but also safety information for drivers to receive real-time warning information and intuitively recognize road traffic condition ahead so that drivers can respond. To examine the effects of safety driving inducement level on drivers, a simulation test was conducted using driving simulator as well as a satisfaction survey. The result showed that the Smart Delineator was able to identify the location of occurrence and affecting driving according pattern, either adhering to recommended speed or reducing speed according to the pre-defined hazard level.

The Preliminary Study on Driver's Brain Activation during Take Over Request of Conditional Autonomous Vehicle (조건부 자율주행에서 제어권 전환 시 운전자의 뇌 활성도에 관한 예비연구)

  • Hong, Daye;Kim, Somin;Kim, Kwanguk
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.101-111
    • /
    • 2022
  • Conditional autonomous vehicles should hand over control to the driver according on driving situations. However, if the driver is immersed in a non-driving task, the driver may not be able to make suitable decisions. Previous studies have confirmed that the cues enhance take-over performance with a directional information on driving. However, studies on the effect of take-over cues on the driver's brain activities are rigorously investigated yet. Therefore, this study we evaluates the driver's brain activity according to the take-over cue. A total of 25 participants evaluated the take-over performance using a driving simulator. Brain activity was evaluated by functional near-infrared spectroscopy, which measures brain activity through changes in oxidized hemoglobin concentration in the blood. It evaluates the activation of the prefrontal cortex (PFC) in the brain region. As a result, it was confirmed that the driver's PFC was activated in the presence of the cue so that the driver could stably control the vehicle. Since this study results confirmed that the effect of the cue on the driver's brain activity, and it is expected to contribute to the study of take-over performance on biomakers in conditional autonomous driving in future.