• Title/Summary/Keyword: 차량 번호판 추출

Search Result 155, Processing Time 0.03 seconds

Vehicle License Plate Recognition System using DCT and LVQ (DCT와 LVQ를 이용한 차량번호판 인식 시스템)

  • 한수환
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 2002
  • This paper proposes a vehicle license plate recognition system, which has relatively a simple structure and is highly tolerant of noise, by using the DCT(Discrete Cosine Transform) coefficients extracted from the character region of a license plate and the LVQ(Learning Vector Quantization) neural network. The image of a license plate is taken from a captured vehicle image based on RGB color information, and the character region is derived by the histogram of the license plate and the relative position of individual characters in the plate. The feature vector obtained by the DCT of extracted character region is utilized as an input to the LVQ neural classifier fur the recognition process. In the experiment, 109 vehicle images captured under various types of circumstances were tested with the proposed method, and the relatively high extraction rate of license plates and recognition rate were achieved.

  • PDF

The Extraction of Vehicle Number Components Using Adaptive Neural Network (적응성 신경회로망 기법을 이용한 차량 일련번호 추출)

  • 제성관;강이철;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.139-142
    • /
    • 2000
  • 자동차 번호판 일련번호를 인식하는 과정에서 차량이미지는 예상치 못할 정도로 복합적인 문제를 많이 포함하고 있다. 번호판 주위환경에서의 다양한 조건에 따른 적응성을 가지고 빠근 추출을 성공적으로 수행하는 것은 이 분야에서 매우 중요한 문제이다. 본 논문은 이러한 문제를 해결할 수 있는 자동차 번호판 일련번호 추출에 관한 연구로서, 레이블링기법과 적응성 신경망을 활성화시켜 일련번호를 추출하는 알고리즘을 제안하므로써 자동차 번호판 주위환경의 다양한 조건과 복합적 문제를 빠른 시간에 적응하여 해결을 할 수 있도록 하였다.

  • PDF

A Fuzzy-based License Plate Extraction Method under Real Conditions (퍼지원리에 기반한 차량 번호판 추출 방법)

  • Kwon, Sung-Jin;Kim, Gyeong-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.850-852
    • /
    • 2005
  • 차량을 포함하는 임의의 영상에서 번호판 추출은 다양한 조명조건 및 배경, 촬영 각도, 번호판 종류 등의 요인으로 인해 고도의 영상처리 과정을 필요로 한다. 본 논문에서는 실제 환경에서 발생할 수 있는 이러한 요인들에 대해 강건한 번호판 추출 방법을 제안한다. 제안하는 방법은 입력영상의 RGB 성분들을 색상성분과 영암성분으로 분리할 수 있는 칼라모델 HSI로 변환하고 H(hue)와 S(saturation)성분을 이용하여 번호판의 배경색상을 고려한 칼라 퍼지지도를 구성한다. 또한, I(intensity)성분을 이용하여 에지밀도를 추출하고 에지밀도 지도에 기반한 영역분리 퍼지지도를 생성한다. 마지막으로, 후보영역 탐색을 위해 칼라 퍼지지도와 영역분리 퍼지지도를 결합하고, 연결성분 해석(Connected Component Analysis)을 통해 ROI(Region Of Interest)를 추출한다. 제안하는 방법의 유효성 검증을 위해 조명 및 촬영 각도에 제한을 거의 두지 않고 촬영된 차량 영상 410장을 실험 영상으로 사용하였다. 실험 결과에서는 $97.1\%$의 효과적인 추출 성공률을 볼 수 있었다.

  • PDF

Vehicle License Plate Recognition Using Neural Networks and Android Devices (안드로이드 기기와 신경망을 이용한 차량 번호판 인식)

  • Han, Jong-Woo;Kim, Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.41-44
    • /
    • 2015
  • 본 논문에서는 안드로이드 기기를 활용하여 차량의 번호판을 인식하는 시스템을 제안한다. 이 시스템은 안드로이드 기기로 촬영한 차량의 이미지를 이용하여 번호판을 인식한다. 촬영한 이미지에서 번호판 영역을 추출한 후 번호판 영역 내에서 각각의 문자를 개별 추출한다. 추출된 각각의 문자에 대하여 세선화를 수행하고 세선화 후 얻은 이미지를 신경망의 입력으로 이용하여 최종적으로 개별의 문자를 인식하고 결과를 안드로이드 기기에 출력한다. 안드로이드 기기를 이용하여 바로 번호판을 인식할 수 있기 때문에 시, 공간에 대한 제약이 없으며 신경망을 사용하기 때문에 기존의 문자 인식 방법보다 우수한 인식률을 보인다.

  • PDF

A Method for Extraction of License Plate Region using Structural Properties of Vehicles (자동차 정면의 구조적 특징을 이용한 번호판 영역 추출 방법)

  • 이윤희;김봉수;김경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.601-603
    • /
    • 2003
  • 최근에 차량수의 증가로 인하여 교통량이 증가하고 그로 인하여 ITS(Intelligent Transport System)에 대한 관심이 증가하게 되었다. 그 중에서도 LPR system(License Plate Recognition system)은 ITS에서 중요한 역할을 한다. 본 논문에서는 차량의 번호를 인식하기 위해 선행되어야 하는 과정인 대상 차량의 번호판 영역을 추출하고 구성 숫자들을 분리하는 알고리즘을 제안한다. 이 알고리즘은 영상에서 차량의 번호판 영역을 찾는 부분과 번호판의 숫자를 분리하는 부분으로 구성이 되어 있다. 먼저 입력 영상에서 gradient를 구하게 된다. 구해진 gradient에서 차량의 구조와 transition의 횟수를 조사를 통해서 번호판 영역을 찾게 된다. 찾아진 번호판 영역에서 adaptive threshold를 적용하여 숫자들을 분리하게 된다. 실내 주차장 환경에서 촬영된 영상을 대상으로 실험을 수행하고 그 결과를 정리하였다.

  • PDF

Region Extraction of License Plates in Noise Environment Using YUV Color Space Convert (YUV컬러 공간변환에 의한 잡음환경의 차량번호판 영역추출)

  • Kim Jae-Nam;Choi Tae-Il;Kim Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.13D no.1 s.104
    • /
    • pp.125-132
    • /
    • 2006
  • The existing recognition system of license plates cannot get the satisfactory result in noise environments. The purpose of this paper is to propose an algorithm that can recognize the region of license plates accurately in a noise environment. The algorithm is formulated by reorganizing the U- and V-channels of YUV color space as YUV is insensitive to light and carries less data than RGB color information. The region of license plates has been extracted by the geometric characteristics, sizes, and places of labeling images. The proposed algorithm was found to improve the process of extracting the region of license plates in various noise environments.

Recognition of License Plate of Car in Vehicle Motion Images (도로 동영상에서 차량번호판 인식)

  • Lee, Hyang-Jeong;Lee, Hyo-Jong;Lee, Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.775-778
    • /
    • 2002
  • 본 논문에서는 도로를 주행하는 차량영상으로부터 번호판의 인식에 대한 연구이다. 차량을 검출하기 위해 두 프레임의 차를 이용하여 도로상에서 차량을 분리하였고, 번호판 영역을 추출하기 위해 명암도 변화의 파형 곡선 결과에 임계값을 적용하여 번호판을 추출하였다. 번호판 영역 검출은 96.05%의 검출결과를 얻었으며, 차량의 번호판 문자인식은 신경망을 통하여 학습 시켰 그 성능은 잭나이프 기법을 통해 측정하였다. 학습데이터에 대해서는 99.85 비학습데이터에 대해서는 88.15%의 인식율을 보였다.

  • PDF

Character Extraction of Car License Plates using RGB Color Information and Fuzzy Binarization (RGB 컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 개별 문자 추출)

  • 김광백;김문환;노영욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • In this paper we proposed the novel feature extraction method that is able to extract the individual characters from the license plate area of the car image more precisely by using the RGB color information and the fuzzy binarization newly proposed. The proposed method, first, extracts from the original image the areas that the pixels with the colors around the green are concentrated on as the candidate areas of the license plate, and selects the area with the most intensive distribution of pixels with the white color among the candidate areas as the license plate area. Second the noises of the license plate area should be removed by using 34{\times}$3 Sobel masking, and the fuzzy binarization method are proposed and applied to the license plate area to generate the binarized image of the license plate area. Lastly, the application of the contour tracking algorithm to the binarized area extracts the individual characters from the license plate area. The experiment on a variety of the real car images showed that the proposed method generates the higher rate of success for character extraction than the previous methods.

A Study on the Automatic Recognition of a Car License Plate Using The color Information and N4M Feature Matching (칼라 정보와 N4M 특징 매칭을 이용한 차량 번호판 자동 인식에 관한 연구)

  • 이종은;이윤형;김재석;정기봉;오무송
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.151-154
    • /
    • 2000
  • 차량 번호판 영상을 안정적으로 추출하여 인식하는 방법에는 여러 가지 땅법들이 제시되어 왔다. 기존의 연구들은 번호판 영역 추출에는 높은 성공률을 보이고 있으나 상대적으로 문자 인식의 성공률이 그에 미치지 못해서 전체적인 인식 성공률에 저하를 가져오는 경우가 대부분 이었다. 따라서 본 연구에서는 칼라 정보를 이용하여 입력 영상의 밝기 보정과 번호판 영역을 추출하고 N4M (Normalized 4 - Mash)을 적용하여 문자인식 처리 시간을 단축시키고 인식글을 향상시킬 수 있었다.

  • PDF

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.313-319
    • /
    • 2007
  • In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.

  • PDF