This paper proposes a vehicle license plate recognition system, which has relatively a simple structure and is highly tolerant of noise, by using the DCT(Discrete Cosine Transform) coefficients extracted from the character region of a license plate and the LVQ(Learning Vector Quantization) neural network. The image of a license plate is taken from a captured vehicle image based on RGB color information, and the character region is derived by the histogram of the license plate and the relative position of individual characters in the plate. The feature vector obtained by the DCT of extracted character region is utilized as an input to the LVQ neural classifier fur the recognition process. In the experiment, 109 vehicle images captured under various types of circumstances were tested with the proposed method, and the relatively high extraction rate of license plates and recognition rate were achieved.
Proceedings of the Korea Multimedia Society Conference
/
2000.11a
/
pp.139-142
/
2000
자동차 번호판 일련번호를 인식하는 과정에서 차량이미지는 예상치 못할 정도로 복합적인 문제를 많이 포함하고 있다. 번호판 주위환경에서의 다양한 조건에 따른 적응성을 가지고 빠근 추출을 성공적으로 수행하는 것은 이 분야에서 매우 중요한 문제이다. 본 논문은 이러한 문제를 해결할 수 있는 자동차 번호판 일련번호 추출에 관한 연구로서, 레이블링기법과 적응성 신경망을 활성화시켜 일련번호를 추출하는 알고리즘을 제안하므로써 자동차 번호판 주위환경의 다양한 조건과 복합적 문제를 빠른 시간에 적응하여 해결을 할 수 있도록 하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.850-852
/
2005
차량을 포함하는 임의의 영상에서 번호판 추출은 다양한 조명조건 및 배경, 촬영 각도, 번호판 종류 등의 요인으로 인해 고도의 영상처리 과정을 필요로 한다. 본 논문에서는 실제 환경에서 발생할 수 있는 이러한 요인들에 대해 강건한 번호판 추출 방법을 제안한다. 제안하는 방법은 입력영상의 RGB 성분들을 색상성분과 영암성분으로 분리할 수 있는 칼라모델 HSI로 변환하고 H(hue)와 S(saturation)성분을 이용하여 번호판의 배경색상을 고려한 칼라 퍼지지도를 구성한다. 또한, I(intensity)성분을 이용하여 에지밀도를 추출하고 에지밀도 지도에 기반한 영역분리 퍼지지도를 생성한다. 마지막으로, 후보영역 탐색을 위해 칼라 퍼지지도와 영역분리 퍼지지도를 결합하고, 연결성분 해석(Connected Component Analysis)을 통해 ROI(Region Of Interest)를 추출한다. 제안하는 방법의 유효성 검증을 위해 조명 및 촬영 각도에 제한을 거의 두지 않고 촬영된 차량 영상 410장을 실험 영상으로 사용하였다. 실험 결과에서는 $97.1\%$의 효과적인 추출 성공률을 볼 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.07a
/
pp.41-44
/
2015
본 논문에서는 안드로이드 기기를 활용하여 차량의 번호판을 인식하는 시스템을 제안한다. 이 시스템은 안드로이드 기기로 촬영한 차량의 이미지를 이용하여 번호판을 인식한다. 촬영한 이미지에서 번호판 영역을 추출한 후 번호판 영역 내에서 각각의 문자를 개별 추출한다. 추출된 각각의 문자에 대하여 세선화를 수행하고 세선화 후 얻은 이미지를 신경망의 입력으로 이용하여 최종적으로 개별의 문자를 인식하고 결과를 안드로이드 기기에 출력한다. 안드로이드 기기를 이용하여 바로 번호판을 인식할 수 있기 때문에 시, 공간에 대한 제약이 없으며 신경망을 사용하기 때문에 기존의 문자 인식 방법보다 우수한 인식률을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.601-603
/
2003
최근에 차량수의 증가로 인하여 교통량이 증가하고 그로 인하여 ITS(Intelligent Transport System)에 대한 관심이 증가하게 되었다. 그 중에서도 LPR system(License Plate Recognition system)은 ITS에서 중요한 역할을 한다. 본 논문에서는 차량의 번호를 인식하기 위해 선행되어야 하는 과정인 대상 차량의 번호판 영역을 추출하고 구성 숫자들을 분리하는 알고리즘을 제안한다. 이 알고리즘은 영상에서 차량의 번호판 영역을 찾는 부분과 번호판의 숫자를 분리하는 부분으로 구성이 되어 있다. 먼저 입력 영상에서 gradient를 구하게 된다. 구해진 gradient에서 차량의 구조와 transition의 횟수를 조사를 통해서 번호판 영역을 찾게 된다. 찾아진 번호판 영역에서 adaptive threshold를 적용하여 숫자들을 분리하게 된다. 실내 주차장 환경에서 촬영된 영상을 대상으로 실험을 수행하고 그 결과를 정리하였다.
The existing recognition system of license plates cannot get the satisfactory result in noise environments. The purpose of this paper is to propose an algorithm that can recognize the region of license plates accurately in a noise environment. The algorithm is formulated by reorganizing the U- and V-channels of YUV color space as YUV is insensitive to light and carries less data than RGB color information. The region of license plates has been extracted by the geometric characteristics, sizes, and places of labeling images. The proposed algorithm was found to improve the process of extracting the region of license plates in various noise environments.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.775-778
/
2002
본 논문에서는 도로를 주행하는 차량영상으로부터 번호판의 인식에 대한 연구이다. 차량을 검출하기 위해 두 프레임의 차를 이용하여 도로상에서 차량을 분리하였고, 번호판 영역을 추출하기 위해 명암도 변화의 파형 곡선 결과에 임계값을 적용하여 번호판을 추출하였다. 번호판 영역 검출은 96.05%의 검출결과를 얻었으며, 차량의 번호판 문자인식은 신경망을 통하여 학습 시켰 그 성능은 잭나이프 기법을 통해 측정하였다. 학습데이터에 대해서는 99.85 비학습데이터에 대해서는 88.15%의 인식율을 보였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.1
/
pp.80-87
/
2004
In this paper we proposed the novel feature extraction method that is able to extract the individual characters from the license plate area of the car image more precisely by using the RGB color information and the fuzzy binarization newly proposed. The proposed method, first, extracts from the original image the areas that the pixels with the colors around the green are concentrated on as the candidate areas of the license plate, and selects the area with the most intensive distribution of pixels with the white color among the candidate areas as the license plate area. Second the noises of the license plate area should be removed by using 34{\times}$3 Sobel masking, and the fuzzy binarization method are proposed and applied to the license plate area to generate the binarized image of the license plate area. Lastly, the application of the contour tracking algorithm to the binarized area extracts the individual characters from the license plate area. The experiment on a variety of the real car images showed that the proposed method generates the higher rate of success for character extraction than the previous methods.
Proceedings of the Korea Multimedia Society Conference
/
2000.11a
/
pp.151-154
/
2000
차량 번호판 영상을 안정적으로 추출하여 인식하는 방법에는 여러 가지 땅법들이 제시되어 왔다. 기존의 연구들은 번호판 영역 추출에는 높은 성공률을 보이고 있으나 상대적으로 문자 인식의 성공률이 그에 미치지 못해서 전체적인 인식 성공률에 저하를 가져오는 경우가 대부분 이었다. 따라서 본 연구에서는 칼라 정보를 이용하여 입력 영상의 밝기 보정과 번호판 영역을 추출하고 N4M (Normalized 4 - Mash)을 적용하여 문자인식 처리 시간을 단축시키고 인식글을 향상시킬 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.12
no.5
/
pp.313-319
/
2007
In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.