• Title/Summary/Keyword: 차량 번호판 추출

Search Result 155, Processing Time 0.025 seconds

Vehicle License Plate Extraction using Low Resolution Camera (저해상도 카메라를 이용한 차량번호판의 추출)

  • 구경모;김하영;안명석;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.802-804
    • /
    • 2004
  • 번호판 인식시스템의 개발에 있어서 번호판 영역의 추출단계는 시스템의 성능에 큰 영향을 미치는 단계이며 문자인식단계 이상으로 중요하다. 본 논문에서는 웹 카메라를 이용하여 얻어진 저해상도 영상으로부터 번호판 고유의 색상과 텍스쳐를 이용하여 번호판영역을 추출하고, 허프변환을 이용한 기울어진 영상의 회전을 통해 번호판 문자 영역화 및 인식에 용이한 차량번호판 영상을 추출하는 기법을 제안한다.

  • PDF

Extraction of license plate using the Background Marking Method (Background Marking법을 이용한 차량번호판의 자동추출)

  • Hwnag, Jung-Ho;Lee, Chang-Gil;Kim, Min-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2771-2773
    • /
    • 2001
  • 날씨변화와 차량의 속도차이 등으로 주어지는 외란은 차량번호판을 인식하기 위한 전처리 작업인 영상 추출에 어려움을 준다. 따라서 이러한 외란으로 부터 강인하면서도 효과적으로 번호판을 추출하기 위한 방법으로 Background Marking 방법을 제안한다. 이 방법은 차량의 종류에 따른 번호판 색상 및 인식을 어렵게 하는 여러가지 조건들을 고려함으로써 차량번호판을 보다 효과적으로 추출하는 방법이다. 또한, 히스토그램 정규화를 사용하여 밝기의 차이에 의한 영상의 손상을 보상함으로써 보다 선명한 차량번호판 영상을 습득 할 수 있게 된다. 제안된 방법을 주행 중 또는 주차 중인 차량영상에 적용하여 성능을 검증하였다.

  • PDF

A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network (컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식)

  • Cho, Jae-Hyun;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.

A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector (명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식)

  • Lee, Eung-Ju;Seok, Yeong-Su
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, we propose the react-time car license plate recognition algorithm using intensity variation and geometric pattern vector. Generally, difference of car license plate region between character and background is more noticeable than other regions. And also, car license plate region usually shows high density values as well as constant intensity variations. Based on these characteristics, we first extract car license plate region using intensity variations. Secondly, lightness compensation process is performed on the considerably dark and brightness input images to acquire constant extraction efficiency. In the proposed recognition step, we first pre-process noise reduction and thinning steps. And also, we use geometric pattern vector to extract features which independent on the size, translation, and rotation of input values. In the experimental results, the proposed method shows better computation times than conventional circular pattern vector and better extraction results regardless of irregular environment lighting conditions as well as noise, size, and location of plate.

Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm (명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식)

  • 김광백;김영주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.379-387
    • /
    • 2001
  • We proposed an enhanced extraction method of vehicle plate, in which both the brightness variation of gray and the Hue value of HSI color model were used. For the extraction of the vehicle plate from a vehicle image, first of all, candidate regions for the vehicle plate were extracted from the image by using the property of brightness variation of the image. A real place region was determined among candidate regions by the density of pixels with the Hue value of green and white. For- extracting the feature area containing characters from the extracted vehicle plate, we used the histogram-based approach of individual characters. And we proposed and applied for the recognition of characters the enhanced ART2 algorithm which support the dynamical establishment of the vigilance threshold with the genera]iced union operator of Yager. In addition, we propose an enhanced SOSL algorithm which is integrated both enhanced ART2 and supervised learning methods. The performance evaluation was performed using 100's real vehicle images and the evaluation results demonstrated that the extraction rates of tole proposed extraction method were improved, compared with that of previous methods based un brightness variation, RGB and HSI individually . Furthermore, the recognition rates of the proposed algorithms were improved much more than that of the conventional ART2 and BP algorithms.

  • PDF

Extraction of Automobile License Plates and Letter Using Color Information and Red Value Change in Line-by-Line (색상정보와 행별 Red값 변화량을 이용한 자동차 번호판과 글자 추출)

  • Yu, SongHyun;Lee, Dokyung;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.138-141
    • /
    • 2014
  • 본 논문에서는 색상 정보를 이용하여 배경 영역이 포함된 자동차의 전,후면 사진에서의 자동차 번호판 영역(녹색, 흰색) 추출과 추출된 번호판에서 글자를 분리해내는 방법을 제안한다. 기존의 색상 정보를 이용하여 번호판을 추출하는 방법은 흰색 번호판(신형 번호판)의 경우에는 배경 영역에서 흰색인 영역도 많고 국내 차량 중에 흰색 차량이 많기 때문에 번호판 영역과 배경 영역 사이의 명확한 구분에 어려움이 있었다. 따라서 행별 Red값 변화도를 조사하여 배경 영역과 번호판 영역 사이의 명확한 구분을 하게 하며, 흰색 번호판의 경우에 추출이 안되면 흰색의 기준을 더 낮추어서 다시 영역 추출을 할 수 있는 재추출 알고리즘을 추가해서 비교적 어두운 사진에서도 번호판영역을 추출할 수 있도록 한다. 추출된 번호판에서 글자를 추출해내는 과정에서도 이진화를 거치면 노이즈가 많이 생기기 때문에 이를 줄이고자 행별 Red값 변화도를 조사하여 번호판 영역에서 위아래 부분의 노이즈를 줄일 수 있도록 하였다.

  • PDF

The Area Extraction of Car-Licence Plates using U Component of LUV Color Coordinate System (LUV 칼라 좌표계의 U성분을 이용한 차량 번호판 영역 추출)

  • 정송균;김성준;김정엽;현기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.641-645
    • /
    • 2003
  • 본 논문은 일반적으로 차량의 번호판이 차종에 따라 녹색계통과 노란색계통 등 일정한 색상을 가지고 있다는 특징을 이용하여, 복합 칼라 좌표계의 성분을 결합한 차량 번호판 영역 추출에 대한 방법을 제안하였다. LUV와 HSI 및 YIQ 칼라 좌표계에서 번호판 영역을 검출하기 위해 사용한 색상은 U, H, Q영역이고 이진화 작업을 위한 임계치 조정의 효율성을 높이기 위해 각 영역의 평균 자기 값을 기준이 되는 값으로 보정하는 방법을 사용하였다. 처리과정의 효율성을 높이기 위해 번호판 후보 영역을 선정하여 번호판 크기의 마스크영역을 수직, 수평 라인으로 검색하여 추출하는 방법을 사용하였다. 실험 결과 H와 Q성분으로만 실험대상에 대하여 결합한 경우는 72.58%의 추출률을 보인 반면, 제안한 방법인 U와 H 및 Q성분의 결합에 의한 경우는 100%의 추출률을 보였다.

  • PDF

Recognition of Car Plate using SOM Algorithm and Development of Parking Control System (SOM 알고리즘을 이용한 차량 번호판 인식과 주차 관리 시스템 개발)

  • 김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1052-1061
    • /
    • 2003
  • In this paper, we propose the car plate recognition using SOM algorithm and describe the parking control system using the proposed car plate recognition. The recognition of car plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate area from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. The extracted characteristic area was recognized by using the SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the car plate recognition using SOM algorithm was very efficient. We develop the parking control system using the proposed car plate recognition that shows performance improvement by the experimental results.

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.

A New Extraction Method of the Target Regions for AVI System (AVI 시스템을 위한 목표 영역의 새로운 추출 기법)

  • Cho, Dong Uk;Park, Young;Choi, Dong-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.22-27
    • /
    • 1998
  • 본 논문에서는 차량 자동 인식 시스템(AVI:Automatic Vehicle Identification)구현에 있어 목표 영역이 되는 차량 번호판과 운전자 얼굴의 특진요소를 효율적으로 추출하기 위한 방법에 대해 다루고자 한다. 이를 위해 카메라를 두 대 설치하여 한 대의 카메라로부터는 차량 번호판 영역을 추출하고 또 하나의 카메라로는 운전자의 얼굴영역을 추출한다. 목표가 되는 두 영역의 추출을 위해 환경에 불변인 경계선 추출 방법을 제안하였고, 히스토그램의 특성을 이용하여 목표영역을 추출한다. 최종적으로 차량 번호판의 경우 추출된 번호판 영역 에 다시 X, Y 라인히스토그램을 이용하여 문자영역의 분리를 행하였고, 운전자의 경우 눈, 코, 입 등에 대한 특징을 추출하였다.

  • PDF