매년 도로와 주차공간의 확장보다 차량의 수가 빠르게 증가하여 그에 따라 불법 주차 관리의 어려움이 증가하고 있다. 이러한 문제점을 해결하기 위해 지능형 주차 관리 시스템이 필요하게 되었다. 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드를 퍼지 신경망 알고리즘을 제안하여 학습 및 인식한다. 본 논문에서는 차량 번호판 영역을 검출하기 위해 프리윗 마스크를 적용하여 수직 에지를 찾고, 차량 번호판의 정보를 이용하여 잡음을 제거한 후에 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역은 반복 이진화방법을 적용하여 이진화하고, 이진화된 차량 번호판 영역에 대해서 수직 분포도와 수평 분포도를 이용하여 번호판의 개별 코드를 추출한다 추출된 개별 코드는 제안된 퍼지 신경망 알고리즘을 적용하여 인식한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고 중간층과 출력층간의 학습 구조는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.
국내에서는 차세대 방송을 위해 ATSC 3.0 기술을 기반으로 한 UHD 방송이 상용화되었다. ATSC 3.0은 IP 프로토콜을 중심으로 통신망과 쉽게 융합 가능하도록 고안된 방송 기술로 고품질 UHD 방송을 포함하여 DMB와 같은 모바일 TV 및 통신망과 연동할 경우 다양한 부가데이터 서비스 제공이 가능한 기술이다. 대표적인 부가 데이터 서비스로는 App 서비스가 있지만 비디오와 무관한 데이터 서비스로 차량 운전자를 위한 여행 및 교통 정보 즉 TTI 서비스가 있다. TTI 서비스는 차량을 목표로 하는 여행 및 교통 정보를 방송망과 더불어 통신망을 통해 전송하여 일반 차량을 포함하여 인터넷이 가능한 커넥티드카 및 자율주행차량에 요구되는 고정밀 위치정보, C-ITS 정보 및 대용량 고정밀 지도 데이터 등을 전달할 수 있다. 본 고에서는 ATSC 3.0 기반의 UHD 방송망과 브로드밴드 망을 활용하여 차량에 유익한 정보를 제공할 수 있는 TTI 서비스에 대해 소개하고자 한다.
신경망을 이용한 영상인식은 여러 분야에 널리 사용되고 있다. 본 연구에서는 차량 번호 인식 및 특정 구역 입출 시 통제에 필요한 인가/비인가 차량 인식 시스템을 연구하였다. 이 시스템은 영상을 인식하는 기능을 갖추고 있어 차량 번호에 대한 모든 정보를 확인하고, 차량 번호판을 정확히 인식할 수 있는 기능을 추가하였다. 그 밖에 신경망을 이용하여 좀 더 빠르게 차량번호를 확인할 수 있도록 하였다.
본 논문에서는 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 RBF 네트워크를 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평ㆍ수직 에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ARTI 알고리즘을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 트루 컬러 차량 영상 155개와 그레이 컬러 차량 영상 100개를 대상으로 실험한 결과, 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출률이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들보다 우수한 성능이 있음을 확인하였다.
자동차에 대한 IT 융합 기술이 증가함에 따라 소프트웨어가 자동차 전체에 차지하는 비중은 점점 증가 하고 있으며, 최근에는 자동차의 품질을 좌우하는 주 요인으로 부각되고 있다. 그러나 응용 서비스를 제공하는데 있어서는 여전히 자동차 제조사별, 차종 별로 특화되어 있는 정보가 많아 차량 정보를 활용하기 어려운 단점이 있다. 이에 본 논문에서는 차량 정보를 기반으로 서비스를 개발하는데 있어 반복적으로 재사용될 수 있는 차량-IT 용 차내망 컴포넌트에 대한 방안을 제시하고자 한다. 차내망 컴포넌트를 통한 차량 정보 이용은 자동차-IT 분야의 시장 진입 장벽을 낮추고, 제품의 개발 및 시험 기간 단축과 이에 따른 비용 절감 효과를 가져 올 수 있다.
본 연구에서 다루고자 하는 문제는 서비스시간 제약을 갖는 도시부 복합교통망에서의 기종점을 잇는 합리적인 최단경로를 탐색하고자 하는 것이다. 서비스시간 제약은 도시부 복합교통망에서의 현실성을 보다 더 사실적으로 표현하지만 기존의 알고리즘들은 이를 고려하지 않고 있다. 서비스시간 제약은 환승역에서 여행자가 환승차량을 이용해서 다른 지점으로 여행할 수 있는 출발시간이 미리 계획된 차량운행시간들에 의해 제한되어지는 것이다. 환승역에 도착한 여행자는 환승차량의 정해진 운행시간에서만 환승차량을 이용해서 다른 지점으로 여행할 수 있다. 따라서 서비스시간 제약이 고려되어지는 경우 총소요시간에는 여행시간과 환승대기시간이 포함되어지고, 환승대기시간은 여행자가 환승역에 도착한 시간과 환승차량의 출발이 허용되어지는 시간에 의존해서 변한다. 본 논문에서는 이러한 문제를 해결할 수 있는 링크기반의 최단경로탐색 알고리즘을 개발하였다. Dijkstra 알고리즘과 같은 전통적인 탐색법에서는 각 노드까지의 최단도착시간을 계산하여 각 노드에 표지로 설정하지만 제안된 알고리즘에서는 각 링크가지의 최단도착시간과 각 링크에서의 가장 빠른 출발시간을 계산하여 각 링크의 표지로 설정한다. 제안된 알고리즘의 자세한 탐색과정이 간단한 복합교통망에 대하여 예시되어진다.
깊은 신경망 모델을 이용한 차량 번호판 검출과 번호판 문자 인식 시스템을 제안한다. 차량 번호판 인식 시스템은 세 가지 종류의 깊은 신경망 모델로 구성된다. 기존의 영상처리 기반의 차량 번호판 검출과 문자 인식을 전부 신경망으로 대체함으로써 영상의 밝기, 회전, 왜곡 등의 변형에 강인한 성능을 얻을 수 있다. 차량 번호판 검출률은 99.3%, 문자 영역 검출률은 99%, 문자 인식률을 98.5%를 얻었다.
오늘날 도시 지역의 화물차량의 통행은 통행의 제한이나 관리활동의 부재의 이유로 도로혼잡 문제화 환경 및 도로파손의 사회비용 증가의 문제점을 증가시키고 있다. 이러한 문제의 해결을 위해 본 연구에서는 도시 내 화물차량의 효율적인 관리를 위한 화물통행망 구축방안을 제안하고자 한다. 본 논문을 통해 제안된 화물 통행망 구축방안은 죤 들의 화물차량 유출입 통행량의 차이에 따라 나타나는 교차통행량을 수용할 수 있는 간선망을 배정하는 방법을 이용하였고, 간선의 기능을 수행하는 도로의 위계별로 나타나는 용량차이를 고려하기 위하여, 도로를 '도로용량편람'의 용량산정을 위한 분류방식을 적용하여 고속도로, 다차로 도로, 도시 및 교외 간선도로로 구분하였으며, 요구되는 차로수 별 통행 가능한 화물차량의 통행수를 산정하였다. 이때, 차로수 별 화물차량 통행량은 도시 계획자의 목적에 따라 적용 가능하도록 교통류 중 화물차량의 유입 허용비율에 따라 각각 산정하였다 최종적으로 개발된 화물통행망 구축방안을 서울시를 대상으로 적용해봄으로써 실질적인 효용과 적용 가능성을 확인하였다.
본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드는 퍼지 신경망 알고리즘을 이용하여 인식한다. 차량 번호판 영역을 검출하기 위해 프리윗 마스크에 의해 수직 에지를 찾고, 차량 번호판에 관한 특성 정보를 이용하여 잡음을 제거한 추에 차량 번호판 영역과 개별 코드를 추출한다 추출된 개별 코드를 인식하기 위해 퍼지 신경망 알고리즘을 제안하고 인식에 적용한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고, 중간층과 출력층간의 학습 구조에는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.
이 논문에서는 기존의 보-거더 구조계 주차장 구조물에 대한 차량하중영향 연구를 토대로, 플랫 슬래브 구조계에서 차량하중영향에 대한 연구를 수행하였다. 먼저, 최대부재력을 일으키는 차량하중의 적용을 위해 플랫 슬래브의 주요 설계지점에 대한 영향면을 구성하였으며, 플랫 슬래브의 등가차량하중계수를 인공 신경망기법을 이용하여, 슬래브 두께, 지판 두께, 지판 크기, 슬래브의 단변, 장변 길이 등 주요구조변수로 제시하였다. 사용된 신경망의 훈련은 많은 패턴수를 갖는 비선형 회귀분석에 적합한 Levenberg-Marquardt 알고리즘을 이용하였으며 해석결과와 인공 신경망의 출력의 비교를 통해 알고리즘의 유효성을 검증하였다. 플랫 슬래브 구조계의 등가차량하중계수를 살펴보면, 보-거더 구조계의 경우와 유사하게 주열대와 중간대의 정모멘트 부재력에서 차량하중에 매우 취약함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.