• Title/Summary/Keyword: 차량 레이더

Search Result 183, Processing Time 0.026 seconds

Individual Vehicle Level Detector Evaluation with Application of Traceability and Confidence Interval Concepts (소급성과 신뢰구간 개념을 적용한 개별차량단위 검지기 성능평가)

  • Jang, Jinhwan;Choi, Dongwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.5
    • /
    • pp.11-20
    • /
    • 2014
  • Due to the importance of vehicle detector which plays an essential role in generating real-life traffic information, maintaining detector data quality is preeminent in advanced traffic management and information systems (ATMIS). To this end, agencies periodically conduct performance tests on detectors. Detector evaluation is generally performed by comparing baseline data with corresponding detector data. Here, two important things need to be addressed; one is errors (or uncertainties) included in baseline data and the other is the confidence interval concept to represent evaluation results of sample data to corresponding ones of population. To resolve these problems, a new detector evaluation scheme is introduced and the scheme is applied to individual level detector evaluations of loop, video image, and radar detectors. The purpose of individual level evaluation is to eliminate the balancing (or cancelling-out) effects of over- and under-counts. As a consequence, the proposed scheme is proven to be effectively applied to real-world detector evaluations.

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.

Object detection and distance measurement system with sensor fusion (센서 융합을 통한 물체 거리 측정 및 인식 시스템)

  • Lee, Tae-Min;Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, we propose an efficient sensor fusion method for autonomous vehicle recognition and distance measurement. Typical sensors used in autonomous vehicles are radar, lidar and camera. Among these, the lidar sensor is used to create a map around the vehicle. This has the disadvantage, however, of poor performance in weather conditions and the high cost of the sensor. In this paper, to compensate for these shortcomings, the distance is measured with a radar sensor that is relatively inexpensive and free of snow, rain and fog. The camera sensor with excellent object recognition rate is fused to measure object distance. The converged video is transmitted to a smartphone in real time through an IP server and can be used for an autonomous driving assistance system that determines the current vehicle situation from inside and outside.

Advanced OS-CFAR Processor Design with Low Computational Effort (순서통계에 근거한 개선된 CFAR 검파기의 하드웨어 구조 제안)

  • Hyun, Eu-Gin;Lee, Jong-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • An OS-CFAR (Ordered Statistics CFAR) based on a sorting algorithm is useful for automotive radar systems in a multi-target situation. However, while the typical cell-averaging CFAR has low computational complexity, the OS-CFAR has much higher computation effort. In this paper, we design the new OS-CFAR architecture with a low computational effort. In the proposed method, since one time sorting processing is performed for the decision of the CFAR threshold, the whole processing effort can be reduced. When the fast sorting technique is employed, the computing time of the proposed OS-CFAR is always much shorter compared with typical OS-CFAR method regardless of the data size. We also present the processing result of proposed architecture using the real radar data.

Design and Implementation of DSP module for Automotive Radar System using FMCW (FMCW방식의 자동차 레이더 신호처리부 설계 및 구현)

  • OH Woo-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.77-84
    • /
    • 2004
  • We design and implement the DSP module for automotive radar using FMCW. The designed parameters are based on 77GHz FMCW radar, and show the resolution of 0.4m and 0.67km/h in distance and velocity, respectively. For detecting multiple targets, we discuss the relationship between fb's and targets. In addition, we show that the detection of multiple targets is very simple when the range of $f_r$ is sufficiently larger than that of $f_b$. In the front of ADC, the 2nd order differentiator is applied for reducing the effects of path-loss so that the ADC bits are reduced to 8 bits. The designed block is simulated in Matlab and implemented with DSP and micro-processor.

Comparison of the Methodologies for Calculating Expressway Space Mean Speed Using Vehicular Trajectory Information from a Radar Detector (레이더검지기의 차량 궤적 정보를 이용한 고속도로 공간평균속도 산출방법 비교)

  • Han, Eum;Kim, Sang Beom;Rho, Jeong Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.34-44
    • /
    • 2016
  • This study was initiated to evaluate the performance of methodologies to estimate the space mean speed(SMS) using the time mean speed(TMS) which was collected from the vehicle detection system(VDS) in expressways. To this end, the methodologies presented in prior studies were firstly summarized. It is very hard to achieve exact SMSs and TMSs due to mechanical and communication errors in the field. Thus, a microscopic traffic simulation model was utilized to evaluated the performance. As a result, the harmonic mean and volume-distance weighted harmonic mean were close to the SMS in the case in which the TMSs of individual vehicles were used. However, when the 30-second-interval aggregated TMS were used, the volume-distance weighted harmonic mean was outstanding. In this study, a radar detector was installed in the Joongbu expressway to collect the SMS. The trajectory of individual vehicles collected from the detector were used to calculate the SMS, which was compared with the estimates using other methodologies selected in this study. As a result, the volume-distance weighted mean was turned out to be close to the SMS. However, as the congestion becomes severe. the deviation between the two speed becomes bigger.

Design of 77 GHz Radar Transmitter Using 13 GHz CMOS Frequency Synthesizer and Multiplier (13 GHz CMOS 주파수 합성기와 체배기를 이용한 77 GHz 레이더 송신기 설계)

  • Song, Ui-Jong;Kang, Hyun-Sang;Choi, Kyu-Jin;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1297-1306
    • /
    • 2012
  • This work presents a 77 GHz radar transmitter for the automotive radar system. An integrated 13 GHz frequency synthesizer fabricated using 130 nm RF CMOS process drives a commercial W-band compound semiconductor monolithic multifunction amplifier(MPA), which includes a frequency multiplier by six to generate 77 GHz transmitting signal. The 13 GHz frequency synthesizer includes a high efficiency injection buffer of 4 dBm output power to drive the MPA. The output power of 77 GHz radar transmitter is higher than 13.99 dBm and the magnitude of the reference spur relative to the carrier is -36.45 dBc. The phase noise is -81 dBc/Hz at 1 MHz offset frequency from the carrier.

Doppler Velocity-based Dynamic Object Tracking and Rejection for Increasing Reliability of Radar Ego-Motion Estimation (레이더 에고 모션 추정 신뢰성 향상을 위한 도플러 속도 기반 동적 물체 추적 및 제거)

  • Park, Yeong Sang;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.218-232
    • /
    • 2022
  • Researches are underway to use a radar sensor, a sensor used for object recognition in vehicles, for position estimation. In particular, a method of classifying dynamic and static objects using the Doppler velocity, the output from the radar sensor, and calculating ego-motion using only static objects has been researched recently. Also, for the existing dynamic object classification, several methods using RANSAC or robust filtering has been proposed. Still, a classification method with higher performance is needed due to the nature of the position estimation, in which even a single failure causes large effects. Hence, in this paper, we propose a method to improve the classification performance compared to existing methods through tracking and filtering of dynamic objects. Additionally, the method used a GMPHD filter to maximize tracking performance. In effect, the method showed higher performance in terms of classification accuracy compared to existing methods, and especially shows that the failure of the RANSAC could be prevented.

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

Design of 77 GHz Automotive Radar System (77 GHz 차량용 레이더 시스템 설계)

  • Nam, Hyeong-Ki;Kang, Hyun-Sang;Song, Ui-Jong;Cui, Chenglin;Kim, Seong-Kyun;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.936-943
    • /
    • 2013
  • This work presents the design and measured results of the single channel automotive radar system for 76.5~77 GHz long range FMCW radar applications. The transmitter uses a commercial GaAs monolithic microwave integrated circuit(MMIC) and the receiver uses the down converter designed using 65 nm CMOS process. The output power of the transmitter is 10 dBm. The down converter chip can operate at low LO power as -8 dBm which is easily supplied from the transmitter output using a coupled line coupler. All MMICs are mounted on an aluminum jig which embeds the WR-10 waveguide. A microstrip to waveguide transition is designed to feed the embedded waveguide and finally high gain horn antennas. The overall size of the fabricated radar system is $80mm{\times}61mm{\times}21mm$. The radar system achieved an output power of 10 dBm, phase noise of -94 dBc/Hz at 1 MHz offset and a conversion gain of 12 dB.