• Title/Summary/Keyword: 차량하중모형

Search Result 51, Processing Time 0.023 seconds

The Dynamic Effect of Highspeed Trains on Railway Bridges (고속철도 차량의 주행이 교량에 미치는 충격효과)

  • Yu, Chul Soo;Kang, Young Jong;Kim, Jong Heun;Kweon, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.187-199
    • /
    • 1998
  • The highspeed railway bridge which support continuous and high moving mass evalute the dynamic state and make the displacement of the bridge makes more or less, but up to this time the bridges are designed by the static design concept. for example when we design bridge we use impact factor, which only times the static load makes dynamic load. But becouse it simples. it can't express all of the effects. And so, in this report we study the modeling method of the moving mass and the dynamic factor.

  • PDF

Seismic response characteristics according to the supporting conditions of middle slab of double-deck undersea tunnel using the centrifuge testing (원심모형 실험을 이용한 해저 복층터널 중간슬래브 지지조건에 따른 지진 응답특성)

  • Um, Ki-Yoon;Park, Inn-Joon;Kwak, Chang-Won;Jang, Dong-In
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.347-360
    • /
    • 2018
  • Due to the concentration and congestion of traffic in Seoul metropolitan area, effective utilization of underground space is required, and construction of various underground structures such as a double deck tunnel is increasing. Double deck tunnels are divided into upper and lower runways, and the most important part is middle slab. To investigate seismic behavior of middle slab, experimental study is required because of the complexity of the load and the mechanism of earthquake. In this study, centrifugal model tests were conducted to investigate the response characteristics of earthquake response according to the support conditions of the middle slab of a double deck tunnel. Artificial, Ofunato (short period) and Hachinohe (long period) seismic waves were employed in the experimental study. As a result, it was confirmed that the acceleration attenuation of elastomeric bearings condition was 10.6% in artificial earthquake, 13.6% in Ofunato earthquake, and 10.3% in Hachinohe earthquake. The results indicate that elastomeric bearings have some advantages in the viewpoint of seismic behaviors.

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Development of static and dynamic stability utilizing superior SUPER concrete 100MPa pontoon (정적 및 동적안전성이 우수한 SUPER concrete 100MPa 활용 부잔교 개발)

  • Lim, Hyoung Joo;Yun, Sik Jae;Lee, Sang Hee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.135-136
    • /
    • 2016
  • SUPER concrete poontoon is developed to overcome shortcomings about corrosion problem of steel pontoon and the insufficient freeboard line of concrete pontoon. Top slab of Pontoon resists truck load or sidewalk live load. The soffit slab and outer wall of Pontoon resist the horizontal and vertical components of wave pressure, and those were loaded along X and Y-axis of Pontoon. Global analysis for the Pontoon is carried out to design its cross-sections economically using a geometric non-linear time history analysis method by Strand7 and buoyance-stability calculated automatically on non-vertical boundary conditions. And the load-capacity of Pontoon is confirmed through mock-up tests.

  • PDF

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.

Development Status of Korea Accelerated Loading and Environment Simulator (KALES) (한국형 포장가속시험시설의 개발현황)

  • Yang, Seong-Cheol;Yu, Tae-Seok;Eom, Ju-Yong
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.139-148
    • /
    • 2000
  • Currently existing Accelerated Pavement Testing (APT) systems developed in several countries have been employed mainly to test the performance of asphalt pavement. Meanwhile, the length of concrete pavement is similar to that of asphalt pavement in expressways of Korea. and is expected to increase due to its durability and compatibility to our weather condition. To meet the society's demand of having our own APT system which can examine the long-term performance of concrete pavement, a contract study to develop Korea Accelerated Loading and Environment Simulator (KALES) for concrete pavement has been performed for 3 years from 1997 through 1999. Through the project, a detailed design was Peformed for the KALES system in which the entire structure of KALES, loading mechanism, wandering mechanism, suspension system, driving system were proposed. Also in advance to design a full-scale KALES system, a sample scale model was manufactured and tested for operating motion and force distribution. It is evident that the proposed prototype KALES system will provide higher degree of traffic simulation and durable operation, based on the satisfactory fatigue analysis.

  • PDF

An Experimental Study on Precast Bridge Piers Confined by FRP for Technical Development of Accelerated Construction (급속시공기술 개발을 위한 FRP로 보강된 프리캐스트 교각의 실험 연구)

  • Lee, Seung-Hye;Lee, Yeong-Ho;Hwang, Yoon-Koog;Song, Jae-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.237-240
    • /
    • 2008
  • Today, some bridges or highways are becoming superannuated in Korea. Also, in this section, rehabilitation, replacement and expansion are necessary to increasing traffic volumes these days. Bridge reconstruction is major problem because it has relation to civil application, economical loss and loss of vehicles made a detour while this work. Many precast components and methods of construction are developed for this issue. Many research of various precast components and new materials are being performed owing to apply to prefabrication bridges. The present paper represents experimental studies on the performance of precast CFFT pier model. Also, stay-in-place RC pier and stay-in-place CFFT pier are made an experiment on due to comparing test results. Hysteretic responses of all columns are obtained through the test. Compared with the displacement ductility factors, conclusions of seismic performances can be made.

  • PDF

A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test (유한요소 해석과 모형실험을 통한 교량받침의 거동특성 연구)

  • Lee, Jae-Uk;Jung, Hie-Young;Oh, Ju;Park, Jin-Young;Kim, See-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.96-106
    • /
    • 2014
  • The increased vibration level of the railway bridge could make significant noise and, also, cause structural damages such as fatigue cracks. Related to these subjects, a spherical elastomeric bridge bearing, which is layered by hemispherical rubber and steel plates, was investigated in terms of its vibration performance. Several different shape factors could be considered by changing the curvature of hemispherical surface and size in rubber and steel plate thicknesses in the manufacturing stage. The performance of the spherical elastomeric bearing for the reduction in vibration was compared with that of the conventional bearing by performing vibration experiments on a scale-downed model. The rubber material characteristics and spherical shape are found to be important parameters in reducing the bridge vibration.

Structural Performance Analysis of New Type CFTA Girder Bridge (신형식 CFTA 거더 교량의 구조성능평가)

  • Lee, Ji-O;Jeong, Min-Chul;Park, Kyung-Hoon;Kong, Jung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • In this research, static load test is performed to verify the arch effect and structural performance of CFTA(Concrete-Filled and Tied steel tubular Arch) girder, and FE(Finite Element) analysis is performed to investigate validity of the test result. CFTA girder is designed to maximize the benefit of each material, such as steel plate, filled concrete and PS tendon. Static load test is performed based on the frame-analysis result of 12m sample miniature model. The result of static load test is that structural performance and safety of CFTA girder are confirmed and there is different deflection mode with other structural form result from arch effect. FE analysis with ABAQUS is also performed to show the validity of the truck collision safety and static load test.