• Title/Summary/Keyword: 차량추종시스템

Search Result 36, Processing Time 0.029 seconds

Backward Path Tracking Control of a Trailer Type Vehicle Using a RCGA Based Parameter Estimation (RCGA 기반의 파라미터 추정 기법을 이용한 트레일러형 차량의 후방경로 추종제어)

  • 위용욱;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • This paper presents a methodology on automation of a trailer type vehicle which consists of two parts: a tractor and a trailer. Backward moving and parking control is very important to automate this type of vehicle. It is difficult to control the motion such a trailer vehicle whose dynamics in non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a RCGA(real-coded genetic algorithm) is proposed and a backward path tracking control algorithm is then obtained. The simulation results verify the effectiveness of the proposed method.

  • PDF

A Study on the Backward Path Tracking Control of the Trailer Type Vehicle (트레일러형 차량의 후방경로추종제어에 관한 연구)

  • 백운학
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.11-15
    • /
    • 2000
  • This paper provides a basic study on automatic of a trailer type vehicle which consists of two parts such as a tractor and a trailer Backward moving and parking control is very important to automate this type of vehicle. However it is very difficult to control such their motion since a trailer type vehicle is a non-holonomic system. Therefore in this paper we propose the backward path tracking control algorithm for a trailer type vehicle. And also this paper presents the results of simulation to verify the effectiveness of the proposed control algorithm.

  • PDF

A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System (초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

A Study on Vehicle Platoon Formation on Freeways (Platoon Generation Model) (고속도로 교통류의 차량군집현상에 관한 연구 (차량군집화 발생모형))

  • Lee, Jun;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.109-120
    • /
    • 2007
  • This study developed a methodology that can reflect more realistic traffic flow to understand platoons on highways. The understanding of the phenomenon nay secure highway safety and authoritative credibility in highway planning. In this study platoons generated by 'random effects' of cars are modeled, and this model is validated using a real data set acquired from the Jayu Expressway in Kyonggi Province, Korea.

Methodology for Evaluating Collision Risks Using Vehicle Trajectory Data (개별차량 주행패턴 분석을 통한 교통사고 위험도 분석 기법)

  • Kim, Joon-Hyung;Song, Tai-Jin;Oh, Cheol;Sung, Nak-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.51-62
    • /
    • 2008
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following and lane-changing events generated by individual vehicles traveling within video surveillance area. The proposed methodology derived three indices including real-time safety index(RSI) based on the concept of safe stopping distance, time-to-collision(TTC), and the collision energy based on the conservation of momentum. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing(VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Smart Farm with Automatic Transport Car (자동운반 기능이 가능한 스마트팜)

  • Kim, Tae-Sun;Kim, Tae-Hyeong;Cheon, Dong-Gyu;Choi, Jun-Ho;Lee, Jae-Ho;Lee, Ju-Eun;Jung, Yong-Jae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.233-234
    • /
    • 2019
  • 기존 스마트팜 기술은 수요자 중심이 아닌 대량 생산을 목적으로 시스템화 되어왔다. 이는 고령화에 따른 실질적 농촌 환경에 적용되기에는 경제적인 측면 등의 많은 문제점이 있다. 본 연구에서는 농촌 지역 인구의 고령화로 인한 적용성을 전제로 스마트팜 기술을 적용하고자 한다. 뜨거워지는 폭염으로 인해 일반적인 온실재배시설의 농작물들은 일소 피해와 시들어 말라가는 경우가 많았다. 피해를 최소화하기 위해서는 온습도 환경을 조절해주거나 차광막을 설치해주어야 한다. 하지만 현재 농촌의 작업자들 나이가 점점 증가하고 있고, 홀로 농사를 짓는 고령자가 대다수여서 많은 일을 혼자 감당하기에는 어려움이 많다. 그리고 신체가 연약한 사람들의 경우, 무거운 짐을 옮기다가 자칫 안전사고로 이어질 위험이 있다. 본 논문은 이러한 문제점들을 개선하고 예방하기 위해 기존의 스마트팜 온실 내부에 작업자를 추종하는 소형 스마트 차량을 적용한 '자동 운반 기능이 가능한 스마트팜' 기술을 제안한다. 기존의 스마트 온실 환경제어 기능을 수행하며, 고랑마다 레일을 설치하고 작업자를 추종하는 차량이 있는 스마트팜이며, 어플리케이션을 통해 직접 온실과 차량을 원격으로 수동 제어할 수 있다.

  • PDF

Study on Vehicle Deceleration Control in School Zones by Taking Driver's Comfort into Account (스쿨 존에서 운전자의 승차감을 수반한 차량 감속 제어에 관한 연구)

  • Cho, Hyo-Seung;Kim, Hyoung-Seok;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1359-1366
    • /
    • 2010
  • Recently, many electronic control techniques for vehicles have been developed and applied. One of the technologies can be X-by-wire such as throttle-by-wire, brake-by-wire, steer-by-wire, and etc, in which most of mechanical parts are replaced into electrical wire and actuators. In this study, the effect of throttle-by-wire and brake-by-wire control systems on vehicle velocity control, especially in a school zone, are taken into consideration. The number of accidents reported in school zones is higher than that in other places. The reason for this is that many vehicle drivers do not obey speed limit regulations. Moreover, some of the students are careless while crossing the streets. Therefore, in this study, we attempt to develop a method using throttle-by-wire and brake-by-wire control systems for automatically reducing the vehicle speed such that it will be within the speed limit. First, an engine model and a transmission system model are developed for a specific vehicle model. Second, speed reduction is carried out such that the reduction follows a pre-designed cubic spline trajectory; the trajectory is determined such that rapid deceleration, which causes discomfort to the driver and passengers, can be prevented, for which a fuzzy-PID control algorithm is applied for the trajectory following control. Finally, simulation results are presented to verify the performance of the proposed speed reduction control system.

A Development Of Utility Vehicle Controller With Photovoltaic Power System (태양광 발전 겸용 유틸리티 차량용 컨트롤러의 개발)

  • 김태엽;안호균
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.467-474
    • /
    • 2000
  • This paper describes the development of 7he utility vehicle controller using combination system of battery and photovoltaic power for increasing operation time. In order to keep interchangeability, low cost and high performance, a separately excited DC Motor is controlled without velocity and current measurements by $\mu$-processor. For the parallel operation between the solar cell and battery, dc-dc converter is used, which is applied to the maximum power Point tracking(MPPT) and current control algorithm. By the simulation and experimental results of trial product, the vapidity of the proposed system is verified.

  • PDF

Experimental Setup for Autonomous Navigation of Robotic Vehicle for University Campus (대학 캠퍼스용 로봇차량의 자율주행을 위한 실험환경 구축)

  • Cho, Sung Taek;Park, Young Jun;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • This paper presents the experimental setup for autonomous navigation of a robotic vehicle for touring university campus. The robotic vehicle is developed for navigation of specific areas such as university campus or play parks. The robotic vehicle can carry two passengers to travel short distances. For the robotic vehicle to navigate autonomously the specific distance from the main gate to the administrative building in the university, the experimental setup for SLAM is presented. As an initial step, a simple method of following the line detected by a single camera is implemented for the partial area. The central line on the pavement colored with two kinds, red and yellow, is detected by image processing, and the robotic vehicle is commanded to follow the line. Experimental studies are conducted to demonstrate the performance of navigation as a possible touring vehicle.