• Title/Summary/Keyword: 차량중량

Search Result 165, Processing Time 0.023 seconds

A Study of Impact Factors and Barrier Height of Compact Car Road for Decision of Barrier Type (소형차도로 방호울타리 형식선정을 위한 충돌계수 및 방호울타리 높이선정 연구)

  • Choi, Hyun-Ho;Kim, Ki-Hwan;Lee, Eui-Joon;Yi, Sang-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.605-613
    • /
    • 2010
  • In this study, Impact factors are represented and barrier height of compact car road of safety barrier is suggested through the investigation of applying problems of existed standard of general car road. For this, traffic accidents analysis is performed and based on the analysis, impact vehicle weight, impact Angle, crash velocity, and barrier height are investigated. For the decision of impact angle, analysis is carried out by comparison of RISER and 2-lines expressway accidents data. Through this, higher-impact angle is suggested. Vehicle weight data of sub-compact car, small vehicle, medium and large vehicle, SUV, small truck is surveyed and analyzed. Based on the accident accumulation rate, regression analysis of vehicle weight impact and impact velocity is performed. Also, based on the cumulative rate of vehicle weight on expressways near Seoul, barrier height of compact car road is calculated. It is noted that the results of this study will be contributed to the decision of barrier type.

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

강교량 용접구조의 피로강도 및 응급보수효과에 관한 연구

  • 장동일;김학수;이명구;홍성욱;송창희
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.283-288
    • /
    • 1997
  • 도로와 철도에서 사용되는 강교량에는 최근 차량의 중량화 등에 의해 피로손상이 발생되고 있으며, 이러한 피로손상은 성수대교 붕괴사고나 당산철교 철거등에서와 같이 주로 구조물의 공용중에 발생되기 때문에 이로 인한 사회적$\cdot$경제적 손실은 실로 막대하다. (중략)

  • PDF

A Study on Greenhouse Gas Emission Characteristics of Passenger Car and Van with LPG Fuel According to Displacement and Vehicle Weight (배기량과 차량중량에 따른 LPG 연료를 사용하는 승용 및 승합형 자동차 온실가스 배출 특성에 관한 연구)

  • KIM, HYUNG JUN;LEE, JONG TAE;LIM, YUN SUNG;YUN, CHANG WAN;KEEL, JI HOON;HONG, YOU DEUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.497-502
    • /
    • 2018
  • In Korea, passenger car and van using LPG fuel including taxi constantly increased due to the high cost of fuel. Recently, the emission standard has continuously tightened in the world. In this investigation was conducted the greenhouse gas emission characteristics of LPG vehicles according to the displacement and weight. Exhaust emission characteristics of 13 test LPG vehicles from about 1.0 L to 3.0 L displacements were measured and analyzed by using chassis dynamometer and emission analyzer. It is revealed that the greenhouse gas emission was showed the increasing tendency as the displacement and curb weight increased. Also, greenhouse gas emission of SC03 driving cycle has highest value and that of HWFET driving cycle shows the lowest value.

Impact Analysis of Racing Car Using Space Frame (스페이스 프레임을 사용한 경주용 차량의 충돌해석)

  • Cho, Jae-Ung;Bang, Seung-Ok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.614-617
    • /
    • 2010
  • 본 논문에서는 충돌하중 하에서 스페이스 프레임을 사용하는 경주용 차량의 프레임에 작용하는 응력을 분석한다. 충돌 시 운전자의 안전을 확보하고 변형을 최소한으로 줄이며, 최적화 설계를 통하여 중량을 감소시키고 취약부분을 파악한다. 탄소강의 물성치를 바탕으로 트러스 구조로 설계된 차량 프레임의 유한요소모델을 만들고, ANSYS 프로그램을 사용하여 정면, 측면, 후면 방향의 충돌로 인하여 프레임에 작용하는 응력을 해석한다. 정면 및 후면충돌에서는 운전석에 가해지는 영향이 적지만, 측면충돌에서는 영향을 많이 받아 가장 취약한 부분이다. 이러한 취약부분의 보강을 통하여 프레임의 안전성 설계를 증진시키고 시뮬레이션 해석의 결과를 실제 프레임 제작에 활용한다.

  • PDF

Convergence Technique Study through CAE due to the Shape of Lift for Car (차량용 리프트의 형상에 따른 CAE를 통한 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.49-54
    • /
    • 2015
  • Nowadays, one lift among the fundamental equipments at auto-repair must withstand the heavy weight of car. Therefore, the strong lift which is easy to make repairs on cars is the indispensible equipment. In this study, three kinds of lifts are modelled and the simulation analysis is carried out with the finite element analysis program of ANSYS. The durability of lifts due to each configuration can be estimated on the background of this study result and the data to be contributed to the development of new lift for car with safety and durability can be accumulated ultimately. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Structural Design of the Outer Tie Rod for an Electrical Vehicle (전기 자동차용 아우터 타이로드의 구조설계)

  • Seo, Bu-Kyo;Kim, Jong-Kyu;Lee, Dong-Jin;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4171-4177
    • /
    • 2013
  • Outer tie rod is lighter than other, but there is the trend item weight and the number is increasing due to vehicle performance improvement. Thus, to improve vehicle fuel efficiency, weight lightening is essential. Therefore, this research performed the finite element analysis to investigate the structural performance of the outer tie rod for an electrical vehicle. This study was performed as the preliminary study for a lightweight design of the outer tie rod. The weight of outer tie rod was optimized by adopting the steel material and applying the trial and error method. The strengths due to durability and buckling should be considered in the structural design of an outer tie rod. Furthermore, the meta model-based optimization was applied to obtain its lightweight design, leading to 9 % weigh reduction.

An Analysis of Test Results Using the New Fusion Weight Conversion Algorithm for High-speed Weigh-In-Motion System (주행시험을 통한 고속축중기의 융합형 중량환산 알고리즘 효과 분석)

  • Kim, Jong Woo;Jung, Young Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.67-80
    • /
    • 2020
  • High-speed weigh in motion (HS-WIM) is a real-time unmanned system for measuring the weight of a freight-carrying vehicle while it is in motion without controlling vehicle traffic flow or deceleration. In Korea, HS-WIM systems are installed on the national highways and general national ways for pre-selection by law enforcement. In this study, to improve the measurement accuracy of HS-WIM, we devise improvements to the existing integral and peak weight conversion algorithms, and we provide a new fusion algorithm that can be applied to the mat-type HS-WIM. As a result of analyzing vehicle driving tests at a real site, we confirmed the highest level of weight-measuring accuracy.

Study of Driving Stability Performance of 2-Wheeled Independently Driven Vehicle Using Electric Corner Module (전동 통합 샤시를 이용한 2륜 독립구동 차량의 선회성능 향상에 관한 연구)

  • Park, Jinhyun;Choi, Jeonghun;Song, Hyeonwoo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.937-943
    • /
    • 2013
  • An independently driven electric corner module cannot be applied to an actual vehicle without some difficulty, because of vehicle safety problems in the case of malfunctions and degraded ride and handling performance owing to the increase in the unsprung mass. In this study, a simulator is developed to evaluate the vehicle driving performance in order to solve ride and handling problems. Component modeling of a small-sized electric vehicle with an independently driven electric corner module is performed using MATLAB/Simulink. The vehicle is modeled by using CarSim, which can be used to analyze the vehicle maneuvers with 27 DOFs. The control algorithm for the improvement of vehicle driving safety and ride and handling performance is validated by using the developed simulator.