• Title/Summary/Keyword: 차량중량

Search Result 165, Processing Time 0.025 seconds

Welding Technology for Aluminum Rolling Stocks (알루미늄 철도차량의 용접 기술)

  • 서승일
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.32-38
    • /
    • 2004
  • 알루미늄은 중량대 강도의 비가 여타의 구조용 재질에 비해 뛰어나고 가공 및 용접성이 양호하기 때문에 수송수단의 경량화를 위해서는 가장 좋은 재질로 인정되고 있다. 또한 표면의 산화막은 내부식성을 향상시키므로 차량의 수명 향상에 기여할 수 있고, 우수한 재활용성은 환경 보전에도 기여할 수 있다.(중략)

A Study on Influencing Factors in BWIM System and Its Field Applicability (BWIM시스템의 현장 적용성 및 영향인자에 관한 연구)

  • Yoo, Dong Gyun;Kyung, Kab Soo;Lee, Sung Jin;Lee, Hee Hyun;Jeon, Jun Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.251-262
    • /
    • 2014
  • It has been considered that factors affecting accuracy of the estimated weight of moving vehicle by BWIM system are vehicle and bridge characteristics, and measurement conditions which is related to the strain curve. In this study, theoretical review and field test were performed to evaluate effect of these factors in BWIM system. From these evaluations, we proposed a way to improve accuracy of the estimated vehicle information in BWIM system. As the results, it was known that girder type and continuity of spans in bridge are not governing factor, but its plane shape gives large influence on accuracy of the estimated vehicle information. In addition, running speed of vehicle has also large effect on the estimated accuracy of axle distance if the distance between second and third axles is short. However, weight sum of the two axles can be estimated reasonably by assuming them as one axle.

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.

Weight Reducing of Aluminum Extrusion Profiles of a Railway-Car Body Based on Topology and Size Optimization (알루미늄 압출재로 이루어진 철도차량 차체의 경량화를 위한 최적설계 방안 연구)

  • Han, Soon-Woo;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • In this study, we discussed the weight reducing of a urban railway-car body, in particular, of the Korean EMU, by optimizing topology and size of aluminum extrusion profiles. The heaviest parts of aluminum railway-car bodies, i.e., the base plate of underframe and side panels of side frame composed of double skin structures are considered for optimization. Topology optimization process is applied to obtain get an optimized rib structure for the base plate. The thickness of ribs and plates of the topologically optimized base plate and the existing side panel are also optimized by employing the size optimization process. The results are verified by comparing the maximum von Mises stresses and maximum deformation in the case of the existing design with those in the case of the optimized design. It is shown that the weight of a base plate and side panel can be reduced by 12% and that the weight of the whole car body can be reduced by 8.5%.

A Study on the Integration of Motor - Transmission for Commercial Electric Vehicle (상용전기자동차용 모터-변속기 일체화에 관한 연구)

  • Oh, Se-Hoon;Youm, Kwang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2019
  • Owing to the present problems of air pollution and fossil fuel exhaustion, ongoing research has been actively focused on developing an electric actuator system that can utilize diverse energy sources without producing any exhaust gas. Since the motors of such electric vehicles generally rotate at a high speed, the initial acceleration capability required for an automobile is insufficient. In this study, the motor output was decelerated by the transmission; the initial acceleration of the vehicle was increased, and the motor size and weight were reduced. The driving motor and transmission, which each form isolated structures, were integrated to simplify the connector for input and output. By reducing the cooling system's capacity, a vehicle was designed and manufactured that represents a structural change in effective technology.

A Study on the Overload Prevention Effect of Construction Waste Collection and Transportation Vehicles Using On-Board Truck Scale (자중계를 활용한 건설폐기물 수집·운반 차량의 과적 예방효과 연구)

  • Kim, Jong-Woo;Jung, Young-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.444-449
    • /
    • 2020
  • In this study, On-Board Truck Scale was installed on the construction waste collection / transportation vehicles to monitor the weight of the waste at all stages from generation to final treatment. It was performed as a case study of a construction waste control technology that can efficiently manage the total generating and recycling amount using real-time weight/location information obtained by the On-Board Truck Scale device. As a result of the study, it was confirmed that the total amount of construction waste can be monitored in real time, and a plan for efficient logistics transportation can be derived through the analysis of operation patterns by managing the real-time transport volume, transport distance, and transport time of the construction waste collection / transportation vehicles. It was confirmed that overloading can be prevented in advance by controlling the loading also.

Characterization for Applying to Optimized Model of Flatform System Step Parts Material for Low-High Platform Railroad Vehicle (저상고상 철도차량용 승강시스템 스텝 부품 소재의 최적화 모델 적용을 위한 특성 평가)

  • Kwak, Hee-Man;Choi, Jung-Muk;Kim, Hyun-Dong;Park, Min-Heung;Kim, Chul-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1381-1388
    • /
    • 2011
  • Recently, Because of weight lighting and tighten safety regulations of the railway vehicle railroad weight lighting and safety improvement technology is internationally required. Slide step for moving the passenger to high flatform in the railroad vehicle is recognized of important parts. However, Due to high price and weight, it is limited. In this research, In order to apply for railroad, it was redesigned to optimize part count and reduce the price and weight. By choosing honeycombcore as a part for enduring high weight and weight lighting, We produce honeycombpanel of sandwich structure which a different kind connected by using existing stainless(STS304)steel and thermo plasticity glue. Finally, we can find that honeycombpanel is suitable for weight lighting and high weight. As well as, with test result, we can prove that low-high platform railway system will be optimized, if steps are applied to honeycombpanel.

  • PDF

Development and Evaluation of High Speed weigh-in-motion system (고속축하중측정시스템의 개발과 평가)

  • Kim, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Maintenance of the roads and bridges is a major issue for all road administrators around the world, and various initiatives are being implemented in each region for the purpose of controlling the ever increasing road maintenance cost while ensuring the safety of the vehicles driving. Efforts for such initiatives have also been made in Asia and initiatives for managing heavy-weight vehicles have recently gained momentum in Korea and Japan. We have developed a technology for unevenly installing bar-shaped sensors (piezo quartz sensors) to enable dynamic axle load measurement at a highly accurate level, and have estimated our measurement accuracy of axle load/gross weight, etc. on an actual road. The measurement accuracy of the axle load/gross weight varies significantly depending on the number of sensors installed. In our implementation, the target accuracy was set to below ${\pm}5%$ for gross weight measurement so that automatic regulation can be applied. We have achieved our target by installing 8-point measurement system. However, to have this technology widely accepted, it was necessary to reduce the system size so that it can be easily implemented. Therefore, we have estimated the relationship between the measurement accuracy and the system size (number of measurement points), and have come up with the proposal of 3-point measurement as an optimum number of measurement points, and have estimated its performance on an actual road. Additionally, we evaluated the relationship between the measurement accuracy and vehicle velocity.

Whiplash Injury Conditions of Rear-End Collisions at Low-Speed (저속 추돌사고에서 목 상해 조건에 대한 연구)

  • Kim, Myeongju;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.58-76
    • /
    • 2019
  • As the number of reported injuries has tended to increase over time, large hospitalization expenditure from excessive medical treatments and hospitalization, and insurance frauds associated with moral hazard in minor collisions have caused a global societal problem. Many occupants of rear-ended vehicles involved in rear-end collisions complain of whiplash injury, which is also known as neck injury, without any anatomical and radiological evidence. With only clinical symptoms, stating that a whiplash injury is a type of injury defined by the Abbreviated Injury Scale would be difficult. Therefore, this study focuses on minor rear-end collisions, where the rear-ender vehicle collides with the rear-ended vehicle at rest. The mathematics dynamic model is employed to simulate a total of 100 rear-end collision scenarios based on various weights and collision speeds and identify how the weights and speeds of both vehicles influence the risk of whiplash injury in occupants involved in minor rear-end collisions. The possibility of an injury is very high when the same-weight vehicles are involved in accidents at collision speeds of 15 km/h or higher. The possibilities are 36% and 84% with collision speeds of 15 km/h and 20 km/h, respectively, if weights are disregarded.

Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration (트럭 공차중량, 중앙분리대 피복두께 및 열화수준에 따른 중앙분리대 충돌해석모델의 민감도 분석)

  • Lee, Jaeha;Lee, Ilkeun;Jeong, Yoseok;Kim, Kyeongjin;Kim, WooSeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.297-306
    • /
    • 2017
  • The concrete median barrier used currently in South Korea was developed the impact level of SB5-B(270kJ). However, the impact level of SB6(420kJ) should be considered in many placed with the increased accident of heavy vehicles. In order to increase the impact resistance of newly developed concrete median barrier, the computer simulation was conducted before real field test. For the accurate behavior of concrete, the parameter, such as impact vehicle, concrete cover depth and deterioration, was important. In this paper, a parametric study was conducted depending on vehicle curb weight, concrete cover depth and level of deterioration. The impact resistance of concrete median barrier was severely changed depending on vehicle curb weight and concrete cover depth. Furthermore, the impact resistance of concrete median barrier was also decreased due to deterioration of concrete, therefore the repair and rehabilitation should be conducted for damaged concrete depending on deterioration level. Therefore, vehicle curb weight, cover depth of concrete structures and deterioration level of concrete should be carefully considered for conducting analysis of concrete structure to vehicle collision.