• Title/Summary/Keyword: 차량번호판

Search Result 289, Processing Time 0.033 seconds

A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm (Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식)

  • Park, SeungHyun;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • This paper proposes an effective algorithm of Korean license plate recognition. By applying Haar-like feature and Canny edge detection on a captured vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are classified using neural networks trained by backpropagation algorithm to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • 이규봉;정연숙;박호식;박동희;남기환;한준희;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.797-800
    • /
    • 2003
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plates center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate revered by the learning pattern, the effort of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • hwang, suen ki;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plate.s center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

A Robust License Plate Extraction Method for Low Quality Images (저화질 영상에서 강건한 번호판 추출 방법)

  • Lee, Yong-Woo;Kim, Hyun-Soo;Kang, Woo-Yun;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper proposes a robust license plate extraction method from images taken under unconstrained environments. Utilization of the color and the edge information in complementary fashion makes the proposed method deal with not only various lighting conditions, hilt blocking artifacts frequently observed in compressed images. Computational complexity is significantly reduced by applying Hough transform to estimate the skew angle, and subsequent do-skewing procedure only to the candidate regions. The true plate region is determined from the candidates under examination using clues including the aspect ratio, the number of zero crossings from vertical scan lines, and the number of connected components. The performance of the proposed method is evaluated using compressed images collected under various realistic circumstances. The experimental results show 94.9% of correct license plate extraction rate.

A Vehicle License Plate Detection Scheme Using Spatial Attentions for Improving Detection Accuracy in Real-Road Situations

  • Lee, Sang-Won;Choi, Bumsuk;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.93-101
    • /
    • 2021
  • In this paper, a vehicle license plate detection scheme is proposed that uses the spatial attention areas to detect accurately the license plates in various real-road situations. First, the previous WPOD-NET was analyzed, and its detection accuracy is evaluated as lower due to the unnecessary noises in the wide detection candidate areas. To resolve this problem, a vehicle license plate detection model is proposed that uses the candidate area of the license plate as a spatial attention areas. And we compared its performance to that of the WPOD-NET, together with the case of using the optimal spatial attention areas using the ground truth data. The experimental results show that the proposed model has about 20% higher detection accuracy than the original WPOD-NET since the proposed scheme uses tight detection candidate areas.

Improvement Method of Recognition Rate Using Brightness Control of Vehicle License Plate (차량 번호판 밝기 제어를 이용한 인식률 개선 방안)

  • Lee, Kwang Ok;Bae, Sang Hyun
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.57-63
    • /
    • 2017
  • The most important, essential prerequisite for the improvement of vehicle license plate recognition is the acquisition of high-quality vehicle images. Because typical images acquired from roads are affected by different environmental factors including the time of day, sunlight, and the weather, the brightness and the shape of the license plates in the images are inconsistent. To this end, many image corrections are performed, resulting in slower recognition and lower recognition rate. Therefore, in this study, we used the images acquired from roads to test the proposed method for fast capturing of vivid, high-quality vehicle images by measuring the brightness around license plates during real-time image capturing to control in real time the factors, such as shutter speed, brightness, and gain of the camera, that affect the brightness and the quality of the images.

A New Extraction Method of the Target Regions for AVI System (AVI 시스템을 위한 목표 영역의 새로운 추출 기법)

  • Cho, Dong Uk;Park, Young;Choi, Dong-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.22-27
    • /
    • 1998
  • 본 논문에서는 차량 자동 인식 시스템(AVI:Automatic Vehicle Identification)구현에 있어 목표 영역이 되는 차량 번호판과 운전자 얼굴의 특진요소를 효율적으로 추출하기 위한 방법에 대해 다루고자 한다. 이를 위해 카메라를 두 대 설치하여 한 대의 카메라로부터는 차량 번호판 영역을 추출하고 또 하나의 카메라로는 운전자의 얼굴영역을 추출한다. 목표가 되는 두 영역의 추출을 위해 환경에 불변인 경계선 추출 방법을 제안하였고, 히스토그램의 특성을 이용하여 목표영역을 추출한다. 최종적으로 차량 번호판의 경우 추출된 번호판 영역 에 다시 X, Y 라인히스토그램을 이용하여 문자영역의 분리를 행하였고, 운전자의 경우 눈, 코, 입 등에 대한 특징을 추출하였다.

  • PDF

Carplate Detection of one more cars (다수 차량의 번호판 추출)

  • Kim Youngback;Rhee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.550-554
    • /
    • 2005
  • 본 논문에서는 블럽을 사용해서 다수의 자동차 후면의 번호판을 추출하는 방법을 제안한다. 입력 영상에서 번호판의 문자와 배경사이의 명암도 차이를 이용하여, 입력 영상의 모든 블럽을 찾고, 찾아낸 블럽을 둘러싸는 최소의 사각형들을 구한다. 이 사각형들 중에서 일련의 경향성을 갖는 블럽 그룹을 찾는다. 찾아난 블럽 그룹이 자동차 번호판인지 아닌지를 SVM을 이용하여 확인한다. 적응적 이진화를 제외한 전처리작업을 하지 않았음에도 불구하고 번호판 검출률은 매우 높았으며, 번호판을 검출하는데 걸리는 시간도 길지 않았다.

  • PDF

A Study on Vehicle License Plate Segmentation using Iterative Labeling (반복레이블링기법을 이용한 통합차량번호판의 문자영역화에 관한 연구)

  • Koo Kyung-Mo;Jung Ho-Young;Yoon Hee-Ju;Cha Eui-Young
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.923-926
    • /
    • 2004
  • 본 논문에서는 현재까지 도입된 세 가지 종류의 차량번호판의 구조적 특징을 파악하여 이를 구분하고, 반복레이블링기법을 이용하여 각각의 번호판에서 일련번호를 영역화하는 기법을 제안한다. 또한 차량번호판이 가지는 구조적인 특징을 이용하여 용도기호, 차종기초 및 지역명을 영역화하는 기법을 제안한다.

  • PDF

Comparison of methodologies for license plate recognition (차량번호판 영역 추출 방법론 비교 분석)

  • Lee, Eun-Ji;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.617-620
    • /
    • 2020
  • 최근, 국내 자동차 보유율은 매년 증가하고 있으며, 자동차 증가율에 따라 자동차로 인한 사건, 사고 발생률 또한 증가하고 있다. 국가에서도 지능형교통시스템(ITS) 중 차량 변호판을 인식하는 연구가 활발히 진행되고 있다. 차량 번호판 인식은 사건·사고 발생차량을 추적하거나 주차 무인시스템 등의 분야에 적용된다. 본 논문에서는 차량 번호판 영역을 추출하기 위한 여러 가지 방법들을 비교 분석하여 각 상황에 맞는 알고리즘을 적용하고자 한다.