• Title/Summary/Keyword: 차량동하중

Search Result 49, Processing Time 0.033 seconds

Development of a Numerical Analysis Method of Train/Track Interaction for Evaluation of Dynamic Track Design Load (궤도 설계 동하중 산정을 위한 차량/궤도 상호작용 해석기법 개발)

  • 양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1094-1099
    • /
    • 2002
  • In this paper, a numerical method for vehicle-track interaction analysis is developed to evaluate vertical dynamic force subjected to rail surface. A vehicle is modelled by lumped masses system and track by multi layered continuous beam system. The equation of motion of vehicle and track interaction system is derived by considering compatibility condition at the contact points between wheel and rail. The input vibration source is given by the empirical formula of power spectral density of track irregularity, which is suggested by FRA. Using this method, dynamic impact factors with the train speed are evaluated.

  • PDF

Dynamic Characteristic Analysis of 3-Piece Freight Vehicle with Wedge Friction Damper Using ADAMS (ADAMS를 이용한 3-Piece 마찰 웨지 댐퍼가 장착된 화차의 동특성 해석)

  • Lee, Chul-Hyung;Han, Myung-Jae;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.299-310
    • /
    • 2017
  • In this work, an independent-load friction wedge model was developed using the ADAMS/View program to predict the performance of a freight vehicle with a bogie employing a 3-piece friction wedge. The friction wedge model can generate friction according to lateral and vertical directions of the bolster. The developed friction wedge model was applied to the ADAMS/Rail vehicle model, and results of the dynamic analysis showed a critical speed of 210km/h. In the linear safety analysis, it was confirmed that the lateral and vertical limit of acceleration of the vehicle were satisfied based on UIC518. In the 300R curve line, the application speed was 70km/h, which was satisfied with the limit acceleration of the car-body and bogie based on UIC518. Also, the developed model satisfied the wheel loading, lateral force and derailment coefficient of "The Regulations on Safety Standards for Railway Vehicles"

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

Stress Distribution of Buried Gas Transportation Pipeline According to Vehicle Load Velocity (지중 가스 수송 강관의 차량 이동 속도에 따른 응력 분포 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Yoo, Han-Kyu; Kim, Mi-Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • In order to estimate the integrity and identify the dynamic characteristics of buried gas pipelines subjected to vehicle loads, FE analysis is performed based on the 'Highway and Local Road Design Criteria' and the 'KOGAS Guideline for Pipeline Management'. The FE model describes the current burial condition of Korea properly, and the DB-24 load model is adopted for this research. This study considers a varying velocity in the range of $40{\sim}160\;km/h$ and $P_i=8$ MPa(internal pressure) with depth cover, Z=1.5 m. Maximum stress occurs at v=80 km/h and decreases after v=80 km/h. The maximum induced stress by DB-24 loads is about 10 MPa. Under the design pressure, however, the analysis results show that API 5L Gr. X65 pipelines have sufficient integrity to withstand the vibration of vehicle loads.

  • PDF

Modeling and Verification of Multibody Dynamics Model of Military Vehicle Using Measured Data (실차 측정 정보를 이용한 군용 차량의 다물체 동역학 모델링 및 검증)

  • Ryu, Chi Young;Jang, Jin Seok;Yoo, Wan Suk;Cho, Jin Woo;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1231-1237
    • /
    • 2014
  • It is essential to perform driving performance tests of military vehicles on rough terrain. A full car test is limited by cost and time constraints, because of which a dynamic analysis via computer simulation is preferred. In this study, a vehicle model is developed using MSC.ADAMS, a commercial multibody analysis program, and compared via experiments. FTire is modeled using the results of a tire performance test to obtain the vertical stiffness. A nonlinear damper is modeled by a characteristic experiment. Leaf springs are modeled with beam force elements and consisted to a vehicle model. The vertical force and acceleration response of the wheel are identified when vehicle is passing over a simple bump as well as a sinusoidal road. The developed vehicle model is verified with the results of a full car test.

Steering System Design of Commercial Vehicle for Improving Pulling Phenomenon During Braking (상용차의 제동시 쏠림 개선을 위한 조향 연결점 설계)

  • Lee, Chang Hun;Lee, Dong Wook;Lee, Yong Su;Sohn, Jeong Hyun;Kim, Kwang Suk;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.379-385
    • /
    • 2013
  • The tires, suspension type, and steering system can all cause pulling during braking. Among these, a drag link steering system and leaf-type suspension system are significant causes of vehicle pulling. In this study, the pulling problem is analyzed using the vehicle analysis program "ADAMS/CAR." The drag link and leaf spring behavior is analyzed to find the key reason for pulling. After this, the optimization program "Visual DOC" is used with "ADAMS/CAR" to find a steering link connection point to reduce pulling. After conducting this simulation, K&C (kinematic & compliance) test simulation with a modified connection point is conducted to determine whether the vehicle performance improves. Through a full braking simulation, it is verified that the pulling distance is reduced at braking.

A Study of Dynamic Behavior of Track and Train Interaction on Rail Open Gap (레일 개구부에서의 궤도-차량 상호작용에 대한 연구)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu;Cho, Sun Kyu;Han, Sang Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.345-355
    • /
    • 2007
  • During winter, the CWR (continuous welded rail) may be broken when a temperature drop below the neutral level changes the axial force, causing tensile fracture and creating a rail gap. The passage of a train on a rail with an open gap may lead to very costly derailments. In this paper, the use of a track-and-train-coupled model whose rail has an open gap is proposed for dynamic interaction analysis. Linear track and train systems were coupled in this study by a nonlinear Herzian contact spring, and the complete system matrices of the total track-train system were constructed. Moreover, the interaction phenomenon considering the presence of an open gap in the rail was toughly defined by assigning the irregularity functions between the two sides of the gap. Time history analysis, which has an iteration scheme such as the Newmark-$\beta$ method (based on the Modified Newton-Raphson methods), was conducted to solve the nonlinear equation. .Finally, numerical studies were conducted to assess the effect of the various parameters of the system when applied to various speeds, open-gap sizes, and support stiffnesses of the rail.

A Study on Dynamic Analysis and Fatigue Life of the Belt in the OHT Vehicle (OHT 차량 벨트 동특성 및 피로 수명에 관한 연구)

  • Jung Il-Ho;Kim Chang-Su;Cho Dong-Hyeob;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1085-1092
    • /
    • 2005
  • The OHT(Over Head Transportation) Vehicle transports heavy products quickly and repeatedly at the industrial workplace. The belt in the OHT vehicle is used to support the weight of the OHT Cage. The fatigue of the belt is caused by the dynamic load during the operation time. Since the fatigue fracture of the belt affects the safety at the workplace, the correct prediction of the dynamic load is necessary to calculate the fatigue life of the belt on the design step. In this paper a computer aided analysis method is proposed for the belt in the early design stage using dynamic analysis, stress analysis, belt tensile test, belt fatigue test and fatigue lift prediction method. From the dynamic load time histories and the stress of the belt FE model, a dynamic stress time history is produced. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The method developed in this paper is used to reduce the time and cost for designing the OHT belt in different environment and condition.