• Title/Summary/Keyword: 차량결함

Search Result 104, Processing Time 0.025 seconds

A Study on Utilization of Nondestructive Inspection Method for Defects Evaluation in Electric Multiple Units (도시철도차량 결함평가를 위한 비파괴검사 기법의 적용방안)

  • Pyun, Jang-Sik;Chung, Jong-Duk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.673-679
    • /
    • 2009
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications of NDI technology in EMU.

  • PDF

A method to find the position of fault in a moving vehicle using microphone arrays (마이크로폰 어레이를 이용하여 차량 하부에서 발생한 결함의 위치를 찾아내는 방법)

  • Kim, Yang-Hann;Jeon, Jong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.144-151
    • /
    • 2006
  • Sound generated from a moving vehicle often carries information on the condition of vehicle, for example, whether it has faults or not, where the fault exists. The latter is possible especially by MFAH(moving frame acoustic holography) and beamforming method. MFAH is applicable to the sound source of pure tone or narrow band noise. For the beamforming method, we have to know what kind of wave the sound source radiates, for example, plane wave or spherical wave. That is, whether the above methods are applicable depends on the characteristics of sound source. To apply these methods to the fault detection, we have to know the characteristics of wave from faults. In this research, a machine diagnosis technique based on the above holographic approaches is introduced to find the position of faults. The signal due to faults is modeled based on the fact that the faults radiate impulsive noise, and analyzed in time and frequency domain. The way how MFAH and beamforming method can be used is introduced to find the position of source.

  • PDF

Development of AUTOSAR Conformance Test Architecture Modeling Tool using Eclipse GMF (Eclipse GMF를 이용한 AUTOSAR 적합성 테스트 아키텍처 설계 도구 개발)

  • Cho, Na-Yun;Kyung, Min-Gi;Min, Dug-Ki
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.337-340
    • /
    • 2010
  • 최근 개발하는 소프트웨어의 복잡도 증가로 소프트웨어 및 전체 시스템에 대한 테스팅 기술의 중요성이 커지고 있는 추세에 맞춰 임베디드 소프트웨어에 대한 테스팅 기술의 활발한 연구가 진행되고 있다. 임베디드 소프트웨어 테스트는 개발하는 소프트웨어의 결함 발견을 통해 그 기능과 품질에서 더욱 완전한 소프트웨어 개발을 할 수 있다는 장점을 가지고 현재 차량전장용 표준 플랫폼인 AUTOSAR(AUTomotive Open System ARchitecture) 소프트웨어의 표준 준수여부를 테스트하는 AUTOSAR 적합성 테스트에 적용되고 있다. 본 논문에서는 AUTOSAR 적합성 테스트 프로세스 중 디자인 단계의 테스트 아키텍처를 Eclipse GMF에 기반을 둔 설계 도구 개발을 소개한다. 본 논문의 AUTOSAR 적합성 테스트를 위한 테스트 아키텍처 설계 도구를 통해 설계된 테스트 시스템 결과물의 재사용성을 제공할 것이라 예상한다.

  • PDF

Finite Element Analysis of ICFPD Method for the Defect Detection of Railway Axle (철도차량 차축 결함에 대한 집중 유도 전위차법 탐상의 유한요소 해석)

  • Goo B.C.;Lim C.H.;Kwon S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.24-27
    • /
    • 2005
  • The NDT(Non-Destructive Testing) is valid fur the defect detection of rolling stocks because it can be used to detect defects in invisible places. For example, in case of wheelsets fatigue cracks are initiated in the wheel seat that suffers from fretting fatigue damage. But the conventional ICFPD method can not be applied to detect such cracks in press-fit area of the axle by some technical problems. In this study, we introduced a new ICFPD (Induced Current Focusing Potential Drop) method that can be applied in press-fit area of the axle. And we performed the finite element analysis of the new ICFPD method using measured electromagnetic properties of the wheel and axle. It seems that our approach is very useful f3r the detection of defects in invisible places.

  • PDF

A Vibration Signal-based Deep Learning Model for Bearing Diagnosis (베어링 진단을 위한 진동 신호 기반의 딥러닝 모델)

  • Park, SuYeon;Kim, Jaekwang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1232-1235
    • /
    • 2022
  • 최근 자동차, 철도차량 등 사용자가 있는 기계 시스템에서의 고장 발생 시 사용자의 안전과 관련된 사고로 이어질 수 있어 부품에 대한 모니터링 및 고장 여부 판단은 매우 중요하다. 이러한 부품 중에서 베어링은 회전체와 회전하지 않는 물체 사이에서 회전이 원활하게 이루어질 수 있도록 하는 부품인데, 베어링에 결함이 발생하게 될 경우, 기계 시스템이 정지하거나, 마찰 열에 의해 화재 등의 치명적인 위험이 발생한다. 본 논문에서는 Resnet과 오토인코더를 활용하여 진동 신호 기반의 베어링의 고장을 감지하고 분류할 수 있는 모델을 제안한다. 제안 방법은 raw data를 이미지로 변환하여 입력으로 사용하는데, 이러한 접근을 통해 수집된 데이터의 손실을 최소화하고 데이터가 가지는 정보를 최대한 분석에 활용할 수 있다. 제안 모델의 검증을 위하여 공개된 데이터셋으로 학습/검증 하였고, 제안 방법이 기존 방법과 비교하여 더 높은 F1 Score와 정확도를 보임을 확인하였다.

  • PDF

Research on Rapid Disaster Prevention Measures in Case of Chemical Transport Vehicle Accidents (화학물질 운송차량 사고 시 신속방재방안 연구)

  • Moon, Byoung-Chan
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.119-120
    • /
    • 2023
  • 유해화학물질의 제조, 취급사업장의 화학사고에 대한 대응에는 어느 정도 체계적으로 이루어 지고 있으나 유해화학물질의 운송 중 설비결함이나 교통사고에 의한 폭발, 누출사고는 장소 및 시간등이 확정되지 않고 다양한 변수로 인하여 정부기관의 신속한 대응에는 많은 어려움이 따르고 있다. 다양한 변수들을 고려한 화학사고 업무대응 매뉴얼이 부족하고 현장지휘체계의 신속한 구성과 협업에 의한 비상대응체계를 구축하여 운영하는데 현실적으로 많은 어려움이 있어 이에 대해서 효과적으로 대응하는 방안을 수립하기 위해 검토해야 할 사항들에 대해 알아보고자 한다.

  • PDF

Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail (가드레일에 차량 충돌 시 성토사면의 거동분석)

  • Park, Hyunseob;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Recently, the number of road construction is increasing by industrial development. According to this industrial tendency, the number of traffic accidents are consistently increasing due to increasing number of vehicle on the road. This is mainly because traffic accidents are occurred by various parameter such as negligence of driver, vehicle defects, state of unstable road, natural environment etc. Lane department of vehicles from guardrail is occurring frequently. This type of accident is caused by vehicle performance improvement and shape of vehicle, weak guardrail installation and maintenance. Guardrail has the purpose on prevention such as prevention of traffic accident and prevention of deviating out of road, minimizing damage of driver and vehicle by collision as well as entry into the road through guardrail. Stability evaluation test of guardrail verifies the behavior of guardrail through the crash of truck. At this time, the crash condition has 100 km/h of velocity and $15^{\circ}$ of impact angle. In the case of ground condition, filling slope condition has relatively high bearing capacity of infinite ground towards the test. Guardrail is generally installed on road of shoulder in fill slope in korea. It is possible for stability problem to deteriorate ground bearing capacity in Guardrail in fill slope. The existed study towards stability of guardrail has been carried out in the infinite ground. However, the study on the behavior of fill slope with guardrail is not performed by vehicle collision. Therefore, In this study, the numerical analysis using LS-DYNA was executed for verification on behavior of fill slope with guardrail through vehicle collision. This numerical analysis was carried out with change of embedded depth on installed guardrail post in shoulder of fill slope by vehicle collision and 8 tonf truck crash providing at NCAN (National Crash Analysis Center). As the result, displacement and stress on fill slope are decreased in accordance with the increase of embedded depth of guardrail post. Ground bearing capacity is deteriorated at depth of 450 mm form shoulder of road on fill slope.

Bearing Faults Localization of a Moving Vehicle by Using a Moving Frame Acoustic Holography (이동 프레임 음향 홀로그래피를 이용한 주행 중인 차량의 베어링 결함 위치 추정)

  • Jeon, Jong-Hoon;Park, Choon-Su;Kim, Yang-Hann;Koh, Hyo-In;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.816-827
    • /
    • 2009
  • This paper deals with a bearing faults localization technique based on holographic approach by visualizing sound radiated from the faults. The main idea stems from the phenomenon that bearing faults in a moving vehicle generate impulsive sound. To visualize fault signal from the moving vehicle, we can use the moving frame acoustic holography [Kwon, H.-S. and Kim, Y.-H., 1998, "Moving Frame Technique for Planar Acoustic Holography," J. Acoust. Soc. Am. Vol. 103, No. 4, pp. 1734${\sim}$1741]. However, it is not easy to localize faults only by applying the method. This is because the microphone array measures noise(for example, noise from other parts of the vehicle and the wind noise) as well as the fault signal while the vehicle passes by the array. To reduce the effect of noise, we propose two ideas which utilize the characteristics of fault signal. The first one is to average holograms for several frequencies to reduce the random noise. The second one is to apply the partial field decomposition algorithm [Nam, K.-U., Kim, Y.-H., 2004, "A Partial Field Decomposition Algorithm and Its Examples for Near-field Acoustic Holography," J. of Acoust. Soc. Am. Vol. 116, No. 1, pp. 172${\sim}$185] to the moving source, which can separate the fault signal and noise. Basic theory of those methods is introduced and how they can be applied to localize bearing faults is demonstrated. Experimental results via a miniature vehicle showed how well the proposed method finds out the location of source in practice.

Detection Method for Road Pavement Defect of UAV Imagery Based on Computer Vision (컴퓨터 비전 기반 UAV 영상의 도로표면 결함탐지 방안)

  • Joo, Yong Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.599-608
    • /
    • 2017
  • Cracks on the asphalt road surface can affect the speed of the car, the consumption of fuel, the ride quality of the road, and the durability of the road surface. Such cracks in roads can lead to very dangerous consequences for long periods of time. To prevent such risks, it is necessary to identify cracks and take appropriate action. It takes too much time and money to do it. Also, it is difficult to use expensive laser equipment vehicles for initial cost and equipment operation. In this paper, we propose an effective detection method of road surface defect using ROI (Region of Interest) setting and cany edge detection method using UAV image. The results of this study can be presented as efficient method for road surface flaw detection and maintenance using UAV. In addition, it can be used to detect cracks such as various buildings and civil engineering structures such as buildings, outer walls, large-scale storage tanks other than roads, and cost reduction effect can be expected.

The Non-destructive Inspection Using Infrared Thermal Technique on Reinforced Slopes by Shotcrete (적외선 열화상을 이용한 숏크리트 보강사면의 비파괴점검)

  • Shin, Chang-Gun;Lee, Song;Ahn, Sang-Ro
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.95-102
    • /
    • 2007
  • It needs to Prevent damage as aging shotcrete itself exists as a dangerous component to comuting vehicles or infrastructure due to scaling, spaling, and loosening. However, it is hard to make an approach owing to a steep slope and high work, and there has been indicated a limit that it is difficult to grasp the internal condition of shotcrete on the surface. This study aimed to research internal defects that cannot be observed from the surface, by measuring a subtle thermal transfer on the shotcrete surface by using infrared thermography for overcoming such a technical limit. As a result of conducting an inspection through an analysis on measured data and fieldwork using an endoscope camera, it was impossible to accurately determine the wet part because of an excessive coating of shotcrete, yet, This study is proposed effictively extract a void part of the inside with non-destructive and non-touching method.