• Title/Summary/Keyword: 집합형 학교

Search Result 11, Processing Time 0.018 seconds

Penalized least distance estimator in the multivariate regression model (다변량 선형회귀모형의 벌점화 최소거리추정에 관한 연구)

  • Jungmin Shin;Jongkyeong Kang;Sungwan Bang
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In many real-world data, multiple response variables are often dependent on the same set of explanatory variables. In particular, if several response variables are correlated with each other, simultaneous estimation considering the correlation between response variables might be more effective way than individual analysis by each response variable. In this multivariate regression analysis, least distance estimator (LDE) can estimate the regression coefficients simultaneously to minimize the distance between each training data and the estimates in a multidimensional Euclidean space. It provides a robustness for the outliers as well. In this paper, we examine the least distance estimation method in multivariate linear regression analysis, and furthermore, we present the penalized least distance estimator (PLDE) for efficient variable selection. The LDE technique applied with the adaptive group LASSO penalty term (AGLDE) is proposed in this study which can reflect the correlation between response variables in the model and can efficiently select variables according to the importance of explanatory variables. The validity of the proposed method was confirmed through simulations and real data analysis.