• Title/Summary/Keyword: 집진장치

Search Result 191, Processing Time 0.018 seconds

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.