• Title/Summary/Keyword: 집중응력

Search Result 842, Processing Time 0.022 seconds

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PHENOMENON DURING DISTAL EN MASSE MOVEMENT OF THE MAXILLARY DENTITION (상악 치열의 치군 후방이동에 관한 3 차원 유한요소법적 연구)

  • Shin, Soo-Jung;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.28 no.4 s.69
    • /
    • pp.563-580
    • /
    • 1998
  • This study was designed to analysis the displacement and stress distribution of individual tooth by orthodontic force during distal on masse movement of the maxillary dentition. In this study, three dimensional finite element analysis was used. Author made the finite element model of maxillary teeth, periodontal ligament, alveolar bone and bracket with anatomic and physiologic characteristics on computer. Author analysed and evaluated the displacement and stress distribution of individual tooth when extraoral force, Class II intermaxillary elastics, ideal arch wire, MEAW and tip back bend were used for distal on masse movement of the maxillary dentition. These analyses were also applied in the case of the maxillary second molar were not extracted. Author compared the results of the cases which maxillary second molar were extracted or not. The results were expressed quantitatively and visually. Author obtained following results, 1. When anterior headgear was applied, the posterior translation, posterior tipping, and vertical displacement of teeth were produced more in the anterior segment of the dentition. 2. When Class II intermaxillary elastics were applied in the ideal arch wire, the teeth displacement were usually produced in the anterior segment. But when tip back bend were added in the ideal arch wire, the orthodontic force produced by elastics were transmitted to the posterior segment. As increasing the tip back bend, posterior translation and lingual tipping of anterior teeth were decreased, posterior translation and tipping displacement of posterior teeth were increased, and extrusion of anterior teeth by Class II elastics were decreased 3. When MDAW and Class II elastics were applied, the teeth movement were sir flu with the case of ideal arch wire and Class II elastics, but more small and uniform teeth displacement were produced Compared with the ideal arch wire, posterior tipping of the posterior segment were more produced than lingual tipping displacement of the anterior segment. 4. When the maxillary second molar without orthodontic appliance existed, the displacement of maxillary first molar were decreased.

  • PDF

A study of the cause of metal failure in treatment of femur shaft fracture - Fractographical and clinical analysis of metal failure- (대퇴골 간부 골절시 사용한 금속물의 금속부전(Metal failure)의 기전에 대한 연구)

  • Jeon, Chun-Bae;Seo, Jae-Sung;Ahn, Jong-Chul;Ahn, Myun-Whan;Ihn, Joo-Chyl
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1990
  • The author fractographically analyized the cause of metal failure(the first time this procedure has been used for this metal failure)and also analyized it clinically. In this study, I selected eight cases which have been analyized fractographically. In all these cases, the analysis was done after treatment of metal failure of implants internally fixed to femur shaft fractures at the Department of Orthopedic Surgery, Yeung-Nam University Hospital during the six year period from May 1983 to September 1989. 1. Metal failure occured in five dynamic-compression plates, one Jewett nail, one screw in Rowe plate, and one interlocking nail. 2. The clinical cause of metal failure was deficiency of medial butress in five cases, incorrect position of implant in one case, and incorrect selection of implant in two cases. 3. The time interval between internal fixation and metal failure was four months in one case, between five months to twelve months in six cases, three years in one case. 4. The fractographically analytical cause of metal failure was ; first, impact failure, one case, second, fatigue failure, six cases, machining mark(stress liser), four cases type : low consistent cyclic fatigue failure irregular cyclic fatigue failure third, stress corrosion crack, one case. 5. 316L Stainless Steel has good resistance to corrosion. However, when its peculiar surface film is destroyed by fretting, it shows pitting corrosion. This is, perhaps, the main cause of metal failure. 6. It is possible that mechanical injury occured in implants during the manufacturing of implants or that making a screw hole is the main cause of metal failure.

  • PDF