• Title/Summary/Keyword: 집전체

Search Result 65, Processing Time 0.026 seconds

Fabrication of planar anode-supported SOFC by Tape casting methode (테입캐스팅법을 이용한 평판형 지지체식 연료전지 제조)

  • 유승호;김종희;손희정;송락현;정두환;백동현;신동열
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.241-241
    • /
    • 2003
  • 고체산화물 연료전지(Solid oxide fuel cell : SOFC)는 연료기체가 소유하고 있는 화학에너지를 전기화학반응에 의해 직접 전기에너지로 변화시키는 에너지 변환 장치이다. 고체산화물 연료전지의 특성은 인산형, 용융탄산염형 및 고분자연료전지 둥 다른 연료전지에 비해 효율이 높고 공해가 적으며, 연료개질기가 필요 없고 복합발전이 가능하다. 그러나 작동온도가 고온(100$0^{\circ}C$)이어서 연결재 및 전지의 구성요소가 고가이고 전류집전 및 밀봉 둥 문제점을 가지고 있다. 전극 지지체식 연료전지의 개발은 얇고 치밀한 전해질 제조를 가능하게 하여 낮은 저항을 가지기 때문에 저온에서 작동을 용이하게 하여 고온작동시의 문제점을 해결하기 위한 방안으로 박막제조공정에 대한 연구가 많이 이루어지고 있다. 또한 전지성능을 향상시키기 위해 전기화학적 반응면적과 가스 확산층을 넓게 하기 위한 기공률이 높고 전기전도도가 우수한 지지체 제작에도 많이 연구가 이루어지고 있다.

  • PDF

기술현황분석 - 고체산화물 연료전지용 금속소재/부품의 최근 연구동향

  • Mun, Seong-Mo;Yang, Cheol-Nam;Jeong, Yong-Su
    • 기계와재료
    • /
    • v.21 no.4
    • /
    • pp.84-95
    • /
    • 2010
  • 연료전지는 무공해 동력원 또는 무공해 발전설비로서 필수적으로 요구되는 미래형 친환경 장치이다. 현재 발전용 연료전지를 중심으로 빠르게 기술발전이 이루어지고 있고, 발전용 고체산화물 연료전지는 가장 유망한 분야 중 하나로 산업계의 많은 관심을 받고 있다. 고체산화물 연료전지의 상업화에 있어서 해결해야 할 가장 큰 문제는 대용량화 기술 개발 및 제조비용을 낮추는 일이며, 단가 및 대용량화 문제를 해결하기 위해서 필요한 핵심부품 중의 하나가 금속분리판 및 금속 전류집전체이다. 본 고에서는 고체산화물 연료전지용 금속소재기술 및 부품제조 기술의 연구개발 동향을 소개하고 앞으로 나아가야할 연구방향에 대해서 논의해보고자 한다.

  • PDF

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(I. Modeling and Analysis of a Catenary System) (고속전철 집전시스템의 동역학 해석에 관한 연구(I. 가선계의 모델링 및 해석))

  • Seo Jong-Hwi;Jung Il-Ho;Park Tae-Won;Mok Jin-Yong;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • The dynamic properties between catenary and pantograph of high-speed train are very important factors to affect the stable electric power supply. So as to design the reliable current collection system, a multibody simulation model is needed. In this paper, the dynamic analysis method for a pantograph-catenary cable system of high-speed train is presented. The very deformable motion of a catenary cable is demonstrated using nonlinear continuous beam theory, which is based on an absolute nodal coordinate formulation, and the pantograph is modeled as a rigid multibody. The proposed method might be very efficient, because this method can present the nonlinear properties of a flexible catenary cable and set a various boundary conditions.

A Study on the Thermal Deformation of Current Collectors by Burning Heat Pellets in Thermal Batteries (열전지의 열원 연소에 따른 전류집전체 열변형에 관한 연구)

  • Ji, Hyun-Jin;Kim, Jong-Myong;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.527-534
    • /
    • 2012
  • Thermal batteries are primary batteries that use molten salts as an electrolyte and employ an internal pyrotechnic source to heat the battery stack to operating temperatures, typically between 450 and $550^{\circ}C$. The unit cell of thermal batteries consists of an anode, an electrolyte, a cathode, a heat pellet and a current collector. The heat source for such batteries is typically heat pellets based on $Fe/KClO_4$. The elevated temperature by combustion of heat pellet is supposed to cause a flatness non-uniformity, buckling, with a lateral extension diameter of current collector. This paper mainly focused on the combustion and buckling model of current collector to simulate the effect of heat source. Mechanical stresses in the current collector caused by thermal stress is a critical design consideration of thermal batteries because the internal short circuit could be occurred.

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

Potential Characteristics of Supercapacitor Based on Ruthenium Oxide-Aqueous Electrolyte (루테늄 산화물-수계 전해액 수퍼캐패시터의 전위 특성)

  • Doh, Chil-Hoon;Choi, Sang-Jin;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil;Lee, Ju-won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • The electrode for a supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloride hydrate$(RuO_2{\cdot}nH_2O)$. A supercapacitor was assembled with an electrode of ruthenium oxide material on a current collector of tantalum, and an electrolyte of 4.8 M sulfuric acid. The result of the AC impedance analyses on $Ta/H_2SO_4(4.8 M)/Pt$ cell showed that tantalum was stable at the potential range of $0.0\~1.1V(vs. SCE)$. Therefore, Ta film could be used the supercapacitor as a current collector. The irreversible hydrolysis in the supercapacitor occurred over ca. 1.0V(vs.SCE) when the supercapacitor was protonated to 0.5V(vs. SCE). The supercapacitor protonated to 0.5V(vs.SCE) showed good electrochemical properties when it was tested at the potential range of 1.0V in the charge-discharge test. The potential range of the electrodes including the positive and the negative electrode was varied between -0.004 and 0.995V(vs. SCE). The potential ranges of the positive and the negative electrode were $-0.004\~0.515V(vs.\;SCE)\;and\; 0.515\~0.995V(vs.\;SCE)$, respectively.

Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes (서브마이크로미터 크기의 실리콘 음극용 폴리페난트렌퀴논-폴리아크릴산 전도성 고분자 복합 바인더)

  • Kim, Sang-Mo;Lee, Byeongil;Lee, Jae Gil;Lee, Jeong Beom;Ryu, Ji Heon;Kim, Hyung-Tae;Kim, Young Gyu;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • In order to improve performances of submicrometer-sized Si negative electrode which shows larger volumetric change than nano-sized Si, composite binders are introduced by blending between poly(phenanthrenequinone) (PPQ) conductive polymer binder and poly(acrylic acid) (PAA) having good adhesion strength due to its carboxyl functional group. Blending between PPQ and PAA shows an effect that the adhesion strength of the Si electrode with the composite conductive binder is greatly improved after blending and this makes its better stable cycle performance. Blending ratios between PPQ and PAA in this work are 2:1, 1:1, 1:2 (by weight) and the best capacity retention at 50th cycle is observed in the electrode with the blending ratio 2:1 (named QA21). This is because that PPQ plays a role of conductive carbon among the Si particles or between Si particles and Cu current collector and PAA binds effectively the particles and the current collector. According to this synergetic effect, the internal resistance of the Si electrode with the blending ratio 2:1 is the smallest value. In addition, the Si electrode with PPQ-PAA composite binder shows the better stable cycle performance than the electrode with conventional super-P conductive carbon (20 wt.%).

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

Study of Air-Breathing Polymer Electrolyte Membrane Fuel Cell Using Metal-Coated Polycarbonate as a Material for Bipolar Plates (도금된 폴리카보네이트 분리판을 이용한 공기 호흡형 고분자 전해질막 연료전지에 관한 연구)

  • Park, Taehyun;Lee, Yoon Ho;Chang, Ikwhang;Ji, Sanghoon;Paek, Jun Yeol;Cha, Suk Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.155-161
    • /
    • 2013
  • In this study, a metal-plated polycarbonate was adopted as a material for bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The coated layers included 40-${\mu}m$-thick copper, 10-${\mu}m$-thick nickel, and 0.3-${\mu}m$-thick gold that respectively played the roles of current conduction, adhesion between copper and gold, and minimization of surface corrosion. The maximum power of the air-breathing PEMFC with polycarbonate bipolar plates was $120mW/cm^2$, which was similar to that of graphite bipolar plates. Finally, the maximum power of a 12-cell stack of polycarbonate bipolar plates was $132.7mW/cm^2$, and it had an operating time of 12 h. Therefore, this was considered a suitable material for bipolar plates in PEMFCs.