• Title/Summary/Keyword: 집수지

Search Result 52, Processing Time 0.018 seconds

Design Strategies for Ecological Restoration Using System Dynamics - Focused on 2015 Miryang-si Jayeon Madang Development Project - (시스템 다이내믹스를 활용한 생태복원 설계 전략 - 2015 밀양시 자연마당 조성사업을 사례로 -)

  • Ham, Eun-Kyung;Song, Ki-Hwan;Chon, Jinhyung;Cho, Dong-Gil
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.86-97
    • /
    • 2015
  • "The Jayeon Madang Development Project("JMDP")" is a project being promoted by the Ministry of Environment to create a cultural space and a natural rest area within the city. Abuksan, located at Abuksan in Gyeongsangnam-do Miryang-si Naeil-dong, has suffered a substantial amount of environmental degradation over time, so the need for ecological restoration made it a natural choice for the location of the JMDP's site. The purpose of this study is to examine ecological restoration design strategies used in Abuksan as part of the JMDP using system dynamics. The national archery center, hole, and arable land sites are key restoration areas in Abuksan that have faced with ecological problems. In this study, we identified the status of each site, determined key strategies being implemented, and designed based on the strategies implemented up to this point for solving problems associated with each sites through the use of causal loop diagrams. The results of the causal loop diagram analysis are as follows. The national archery center site was designed around strategies including planting green manure crops and introducing hugelkultur to reduce soil acidification and green network degradation. The hole site was designed as a constructed wetland based on the emergence of hygropreference vegetation, hydrated by rainwater collected at the bottom of hole, ecological and cultural benefits of such an environment. The arable land site restoration design was built around planting native vegetation on one part of the arable land site after soil quality improved and around restoration of grassland and a dry wetland on the other part of the site to reduce soil acidification, erosion, and green network degradation. This study is a significant attempt to apply principles of system dynamics to ecological restoration by providing the design strategies using comprehension of some problems in the ecosystem feedback loops, which has not been used before in general design processes for ecological restoration.

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF