• Title/Summary/Keyword: 집수구역

Search Result 23, Processing Time 0.016 seconds

A Surveying on the Sewage System in Seoul (수도권 하수방제 방식에 관한 조사 연구)

  • 남궁악
    • Water for future
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 1982
  • This study is to find out the reasonable drainage system of sewerage in connection with the geographical conditions, the form of city, and the problem of sewerage in and around Seoul. (1) In supplying the sewerage sewer, the separating system is desirable in connection with the problem of sewerage disposal in future. However, in the existing urban district, the conjunction system is used because of the large amount invested according to the diversion of the sewer of the separation system and the influence of the traffic communication. The sewer of the separating system should be used in the case of the fundamental reconstruction of structure as the redevelopment of the urban district or the subway and new-development of area. Therefore, the separating system should be used completely until the goal year. (2) Drainage area was divided for the natural flowing, considering that the 38 streams and topography paly a role of the main stream of drainage. There are the branches, Guyui, Dug-island, Jayang, Hannam, Banpo, Amsa whose divisions are impossible. In these branches, the drain planning was suggested a forced control method by using the exiting pond age and the pumping station. (3) The best available method which improbes the water quality in Han river is as follows. The sewerage is catched and carried to the sewerage disposal plant by establishing the intercept sewer in both or one side of stream. At the same time, the groudwater volume which springs in each stream is drained separatively.

  • PDF

Transport and management of diffuse pollutants using low impact development technologies applied to highly urbanized land uses (고도화 도시지역에 적용된 LID 기법의 비점오염물질 관리 및 이동)

  • Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2019
  • This study was conducted to understand factors affecting TSS and heavy metals transport on the road, parking lot and roof. During storm events, heavy metals, which were mostly attached to TSS, were also transported when TSS was washed off in the road, parking lot and roof. This finding may be supported by the significant correlations between TSS load and total and soluble heavy metals load including Cr, Fe, Cu, and Pb (Pearson r value: 0.52 to 0.73; probability p value<0.01). Generation and transport of TSS and heavy metals were greater in the road and parking lot compared to the roof due to vehicular activities, slope and greater catchment areas of these sites. It was found that TSS transport during peak flows of storm events ranges from 65% to 75% implying that by controlling peak flows, TSS transportation to nearby water bodies may be decreased. Depending on the target TSS and heavy metal reduction, sizing of low impact development (LID) technologies and green infrastructures (GI) such as infiltration trench, tree box filter, and rain garden may be calculated. Future researchers were recommended to assess the limitations of the systems and determine the design considerations for these types of facilities.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.