• 제목/요약/키워드: 집광

검색결과 297건 처리시간 0.03초

고온태양로와 응용

  • 양흥석
    • 전기의세계
    • /
    • 제30권4호
    • /
    • pp.187-193
    • /
    • 1981
  • 본고의 내용은 다음과 같다. 1. 태양로의 광학계 2. 포물면경의 집광특성 3. 태양로의 구조 4. 태양로의 응용분야 5. 대형 태양로의 과제

  • PDF

집광에 의한 GaAs/AlGaAs태양전지의 출력 증대 연구 (A Study on the Output Power Enhancement of GaAs/AlGaAs Solar Cell using Concentration Method)

  • 이동호;김영환;송진동;김성일
    • 신재생에너지
    • /
    • 제5권3호
    • /
    • pp.26-31
    • /
    • 2009
  • Using MBE growth method, GaAs/AlGaAs solar cell structure was grown. Deposited electrodes are Au/Ni/Ge for n-type and Au/Pt/Ti for p-type electrodes were deposited by E-beam evaporator. Indoor light concentrators were devised and fabricated in order to concentrate artificial solar rays. Also mirror and prism and Fresnel lens concentration system with solar simulator were devised and fabricated. Results of solar cell characteristics were measured with shutting system which can control the amount of light. Maximum power density was 2.13 W/$cm^2$ and maximum concentration was 124 sun, when mirror with Fresnel lens was used at $7854\;mm^2$ of shutter hole.

  • PDF

Dish형 집광장치 이용 10kWe급 태양열 발전시스템 설계 및 시공 사례 (Design and Construction Experiences of 10kWe Dish-type Solar Thermal Power Generation System)

  • 이상남;강용혁;조덕기;유창균;윤환기;김진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.684-687
    • /
    • 2005
  • KIER has been running a demonstration project for 10kWe solar thermal power generation. the project is to build and operate the first solar thermal power generation system in Korea. For concentrating solar thermal energy $40m^2$ dish type concentrator was adapted and a stirling engine is going to be integrated to the system for power production. At the moment building the dish concentrator including mirror and sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

집광형 태양열 조리기의 집열성능에 관한 연구 (A Study on the Thermal Performance of Solar Concentrating Cooker)

  • 강명철;강용혁;윤환기;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.599-603
    • /
    • 2005
  • To evaluate the performance of concentrating solar cookers, a parabolic solar cooker have been designed and constructed. Tests were carried out to define the performance characteristics of concentrating cookers under ambient conditions. The performance and test of the solar cooker were measured and conducted using the international standard procedure that was proposed at the Third World Conference on solar cooking. Stagnation temperature and water heating tests were carried out to determine the maximum temperature attained by the cooker and to evaluate the thermal performance of the cooker. The analysis showed that the solar cooker has maximum cooking power and efficiency 474W, 420W and 41%, 40%, respectively.

  • PDF

집광형 태양열 조리기의 집열성능 평가 연구 (A Study on the Thermal Performance of Solar Concentrating Cooker)

  • 강명철;강용혁;윤환기
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2004
  • To evaluate performance of concentrating solar cookers, we have designed and constructed parabolic solar cooker. Tests are carried out to define the performance characteristic of concentrating cookers under the ambient conditions. Performance and test of solar cooker were followed the international standard procedure that was proposed at the Third World Conference on solar cooking Stagnation temperature and water heating test are carried out to determine the maximum temperature attained by cooker and evaluate the thermal performance of the cooker, respectively.

접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구 (Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system)

  • 강명철;강용혁;김종규;김진수;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF