최근 도서관에서 실시하는 이용자 만족도 조사, LibQUAL+ 평가 등을 통해 계량적 데이터뿐만 아니라 이용자의 직접적 견해를 담은 이용자 코멘트 데이터가 점점 더 많이 수집되고 있다. 이러한 질적 데이터는 이용자의 입장을 이해하고, 도서관 서비스의 환경 개선이 필요한 영역을 확인하며, 이용자 니즈의 우선순위를 파악하는 등 도서관 서비스 개선을 위한 전략 수립에 유용한 자료로써 활용될 수 있는 것이다. 따라서 이용자 코멘트 데이터는 그 내용이 분석되고, 분석 결과를 서비스 및 정책에 반영할 필요가 있다. 본 연구는 이용자 코멘트 데이터의 활용성을 높일 수 있는 기반을 제공하고자, LibQUAL+ 설문의 이용자 코멘트 분석을 중심으로 하여 실제 외국 도서관의 LibQUAL+ 설문 이용자 코멘트 분석 방법을 알아보고, 분석을 위해 사용된 질적 데이터 분석 소프트웨어 및 분류표 등 분석도구에 대해 살펴보았다. 또한, 대표적 질적 데이터 분석 소프트웨어와 외국에서 LibQUAL+ 이용자 코멘트 분석을 위해 개발된 분류표를 최근 국내 대학도서관에서 시행된 LibQUAL+ 설문의 이용자 코멘트 일부에 적용하여 분석해봄으로써 그 유용성을 확인하였다.
본 논문에서는 현장 교사 및 예비교사를 위한 기초 데이터과학 실습 교육 사례를 연구하였다. 본 논문에서는 기초 데이터과학 교육을 위해, 스프레드시트 SW를 데이터 수집 및 분석 도구로 사용하였다. 이후 데이터 가공, 예측 가설 및 예측 모델 검증을 위한 통계학을 교육하였다. 또한, 수천명 단위의 공공 빅데이터를 수집 및 가공하고, 모집단 예측 가설 및 예측 모델을 검증하는 교육 사례를 제안하였다. 이와 같은 데이터과학의 기초 교육내용을 담아, 스프레드시트 도구를 활용한 34시간 17주 교육 과정을 제시하였다. 데이터 수집, 가공 및 분석을 위한 도구로서, 스프레드시트는 파이썬과 달리, 프로그래밍 언어 및 자료구조에 대한 학습 부담이 없고, 질적 데이터와 양적 데이터에 대한 가공 및 분석 이론을 시각적으로 습득할 수 있는 장점이 있다. 본 교육 사례 연구의 결과물로서, 세가지 예측 가설 검증 사례들을 제시하고 분석하였다. 첫 번째로, 양적 공공데이터를 수집하여 모집단의 그룹별 평균값 차이 예측 가설을 검증하였다. 두 번째로, 질적 공공데이터를 수집하여 모집단의 질적 데이터 내 연관성 예측 가설을 검증하였다. 세 번째로, 양적 공공데이터를 수집하여 모집단의 양적 데이터 내 상관성 예측 가설 검증에 따른 회귀 예측 모델을 검증하였다. 그리고 본 연구에서 제안한 교육 사례의 효과성을 검증하기 위해, 예비교사와 현장교사의 만족도분석을 실시하였다.
본 논문에서는 민감한 양적 정보를 얻기 위한 조사에서 응답자들이 정직하게 응답하기를 꺼리는 질문들에 대하여 응답자의 비밀을 노출시키기 않고서 양적 정보에 대한 보다 정확한 정보를 얻을 수 있는 양적 확률화응답기법을 인터넷 상에서 사용할 수 있도록 구현하고자 한다. 본 시스템에 DB 환경에 바탕을 두어 기존의 온라인 설문조사 시스템 및 질적 확률화응답기법과 연계하여 자료를 공유할 수 있을 뿐만 아니라 독립된 스팟 서베이(spot survey)가 가능하도록 구현하고자 한다.
최근 유비쿼터스에 관한 연구가 활발히 진행 중인 가운데, 사용자의 현재 상황을 파악하고 적절한 서비스를 제공해 주기 위하여 위치 정보가 많이 활용되고 있다 이러한 위치 정보는 가정과 같은 실내 환경에서 사용자의 위치 경로와 공간에 구성되어 있는 객체들의 위치를 비교하여, 관계를 탐지하고, 적절한 룰을 사용해 추론함으로써, 사용자에게 필요한 서비스를 요청 없이 자동으로 제공하는데 유용하게 쓰일 수 있다. 본 논문에서는, 가공되지 않은 위치기반의 센서 데이터로부터 상황에 대한 의미를 지닌 컨텍스트(context)를 추론해 내는 시스템의 구조를 제안한다. 본 시스템은 크게 네 개의 계층으로 구성되어 있다. 첫째. 센서 계층(Sensor layer)은 센서로부터 객체의 위치정보를 얻어내어 센서 데이터를 구성한다 둘째, 질적 관계 계층(qualitative layer)은 센서 데이터를 기반으로 하여 객체간의 상대적인 위치 관계를 탐지한다. 셋째, 시공간적 관계 계층(relational layer)은 시간에 따라 축적되는 질적 관계 계층(qualitative layer)의 데이터를 기반으로 하여 객체간의 시간적 공간적인 위치 관계를 추론한다 넷째, 마지막으로 의미적 계층(semantic layer)에서는 객체간의 상황에 안는 의미를 추론함으로써, 서비스 제공을 위한 컨텍스트(context)를 얻는다.
기계학습 기반 비디오 화질 자동 측정 기술은 주관적 화질 평가를 대체하기 위한 기술로, 비디오를 입력 신호로 화질 평가 결과를 출력 신호로 하는 기계학습 모델을 통해서 개발하는 기술이다. 학습에 필요한 비디오 데이터 셋은 입력 신호인 비디오 시퀀스와 입력의 출력신호로 학습할 주관적 화질 평가 결과로 구성된다. 이때 데이터 셋의 일부는 기계학습 기반 비디오 화질 자동 측정 기술 개발 과정에서 학습에 사용하고, 남은 일부는 개발 기술의 성능 평가에 사용한다. 일반적으로 기계학습 기반 기술의 성능은 학습 데이터의 양과 질에 비례한다. 그러나, 기계학습 기반 비디오 화질 자동 측정 기술 개발에 필요한 데이터 셋은 주관적 화질 평가 결과를 포함해야 하므로, 데이터 양을 늘리는 것은 쉬운 문제가 아니다. 이에 본 논문에서는 압축 비디오에 대한 화질 자동 측정 기술 개발을 위해 필요한 데이터 셋을 양과 질적 측면에서 효율적으로 구축하는 방법을 제안한다. 양적 측면에서 효율성을 높이기 위해 부호화 복잡도와 평가 난이도 기반으로 시퀀스를 선정 방법을, 질적 측면에서 효율성을 높이기 위해 쌍 비교(Pairwise Comparison)기반의 주관적 화질 평가 방법을 제안한다.
본 연구는 한국의 인공지능 학습용 데이터 구축 사업과 데이터의 공공 개방에 관한 정책 수행 기관, 데이터 구축 기업, 그리고 이를 활용하는 다양한 기관의 데이터 품질에 대해 이해를 제고하고, 신뢰할 수 있는 인공지능 알고리즘 개발에 있어 가장 중요한 학습용 데이터 품질에 대한 이론적 토대를 만들기 위한 실증적 연구이다. 이를 위해, 데이터의 속성 요인, 데이터 구축환경 요인, 데이터 타입 관련 요인 등 인공지능 학습용 데이터 품질과 관련된 중요 선행요인을 도입하여 이론적 모형을 제안한다. 본 연구는 393명의 인공지능 학습용 데이터 구축 기업과 인공지능 서비스 개발 기업의 실무 담당자를 대상으로 설문조사를 실시하여 데이터를 수집하였다. 데이터 분석은 퍼지셋 질적비교분석 방법과 인공신경망 분석을 통해 이루어졌으며, 분석 결과를 통해 인공지능 학습용 데이터 관련 학술적 및 실무적 시사점을 도출했다.
많은 정보가 인터넷 상에 산재함에 따라 검색엔진의 한계를 느끼게 되었으며, 정보의 질적인 문제를 해결하기 하여 메타데이터가 등장하게 되었으며, 이러한 메타데이터를 대상으로 검색하는 시스템이 등장하게되었다. 이에 본 연구는 2가지 메타데이터 검색시스템(필드검색시스템과 XML기반 구조검색시스템)을 구축하고 시스템의 차이와 이용자의 메타데이터 구조에 대한 이해의 차이가 이용자의 검색 만족도와 검색 정확율에 어떠한 영향을 미치는가를 밝히는 것이다.
관광코스 개발을 위한 관광객의 이동패턴을 통신사의 빅데이터를 바탕으로 관광객 정보를 수집 분석하여 관광코스의 질적 향상을 도모하고자 하며, 특히, 분석된 데이터를 통해 관광객의 관광 유입 효과를 추정할 수 있는 실증적인 데이터를 도출하고, 이를 바탕으로 관광코스의 특성과 향후 새로운 관광코스 개발에 필요한 기초자료로 활용하고자 한다. 지역 관광 코스 개발을 위한 관광객의 이동패턴을 통신사, 카드사, 기타의 수집 빅데이터를 바탕으로 관광객의 이동경로 및 체류시간 정보를 수집 분석하여 관광코스 개발의 질적 향상을 도모하기 위함이며, 특히 분석된 데이터를 통해 관광객의 관광유입 효과를 추정할 수 있는 실증적인 데이터를 도출하고, 이를 바탕으로 관광코스의 특성과 향후 새로운 관광코스 개발에 필요한 기초자료로 활용하고자 한다.
데이터 웨어하우스는 기업의 통합된 데이터의 저장하는 곳이며, 대게는 상당한 규모를 가지고 있다. 또한, 데이터 웨어하우스는 일반적으로 다양한 종류의 데이터를 저장함으로 데이터 웨어하우스에 저장된 데이터는 의사결정 임무에 따라서는 그 질적, 적합성에 차이를 나타내고는 한다. 이러한 데이터 웨어하우스의 특성으로 인해서 때로는 데이터 웨어하우스의 데이터의 효용성이 기업의 의사결정을 지원하는데 있어 제한적일 수 있다. 정보 시스템의 문헌에는 데이터의 질이 의사결정 성과에 미치는 영향에 대해서 많이 알려져 있지 않다. 그래서, 본 연구는 contextual data(상황적 데이터)의 질과 업무의 복잡성이 의사결정 성과에 미치는 영향에 대해서 탐구해보고자 한다. Contextual data의 질과 업무의 복잡성이 의사결정의 성과에 미치는 영향을 조사하기 위하여 웹을 기반으로 하는 데이터 웨어하우스를 이용하는 실험을 실행했다. 연구의 결과는 contextual data의 질이 의사결정의 성과에 영향을 미친다는 것을 통계적으로 보여주었다. 이러한 연구결과는 의사결정자의 의사결정 성과를 향상시키기 위해서는 데이터 웨어하우스의 contextual data의 질을 향상시켜야한다는 것을 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.