• Title/Summary/Keyword: 질의클러스터링

Search Result 154, Processing Time 0.036 seconds

Clustering XML Documents Considering The Weight of Large Items in Clusters (클러스터의 주요항목 가중치 기반 XML 문서 클러스터링)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.1-8
    • /
    • 2007
  • As the web document of XML, an exchange language of data in the advanced Internet, is increasing, a target of information retrieval becomes the web documents. Therefore, there we researches on structure, integration and retrieval of XML documents. This paper proposes a clustering method of XML documents based on frequent structures, as a basic research to efficiently process query and retrieval. To do so, first, trees representing XML documents are decomposed and we extract frequent structures from them. Second, we perform clustering considering the weight of large items to adjust cluster creation and cluster cohesion, considering frequent structures as items of transactions. Third, we show the excellence of our method through some experiments which compare which the previous methods.

Selection of Cluster Hierarchy Depth and Initial Centroids in Hierarchical Clustering using K-Means Algorithm (K-Means 알고리즘을 이용한 계층적 클러스터링에서 클러스터 계층 깊이와 초기값 선정)

  • Lee, Shin-Won;An, Dong-Un;Chong, Sung-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.173-185
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, with a large number of variables, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. In this paper, Condor system using K-Means algorithm Compares with regular method that the initial centroids have been established in advance, our method performance has been improved a lot.

Counseling Case Retrieval System Using Hierarchical Clustering and Sentence Relevance Feedback (계층적 클러스터링과 문장 적합성 피드백을 이용한 상담사례 검색 시스템)

  • 김승일;곽희규;김수형
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.172-174
    • /
    • 1999
  • 본 논문에서는 카운셀링을 원하는 사용자가 카운셀러와 전자메일을 통해 상담을 원할 때 사용자의 상담 내용에 근거하여 유사한 사례를 검색해 주는 시스템을 제안한다. 제안방법은 문서의 계층적 클러스터링과 용어 적합성 피드백을 상담 사례 검색 시스템에 적용시켜, 상담사례에 나타나는 단어의 출현 빈도와 유사도를 통해 트리 구조를 형성하고, 이 트리 구조를 통한 하향 탐색을 수행한다. 하향 탐색을 하는 도중 노드의 매칭함수의 값이 서로 유사하여 노드 선택이 어려울 경우, 사용자에게 질의를 통해 용어를 제시하고, 사용자의 피드백을 통해 입력된 사연 내용의 가중치를 개선하여 내용에 가장 부합되는 문서를 탐색한다.

  • PDF

Method of Document Retrieval Using Word Embeddings and Disease-Centered Document Clusters (단어 의미 표현과 질병 중심 의학 문서 클러스터 기반 의학 문서 검색 기법)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.51-55
    • /
    • 2016
  • 본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.

  • PDF

An Efficient Dynamic Prediction Clustering Algorithm Using Skyline Queries in Sensor Network Environment (센서 네트워크 환경에서 스카이라인 질의를 이용한 효율적인 동적 예측 클러스터링 기법)

  • Cho, Young-Bok;Choi, Jae-Min;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.139-148
    • /
    • 2008
  • The sensor network is applied from the field which is various. The sensor network nodes are exchanged with mobile environment and they construct they select cluster and cluster headers. In this paper, we propose the Dynamic Prediction Clustering Algorithm use to Skyline queries attributes in direction, angel and hop. This algorithm constructs cluster in base mobile sensor node after select cluster header. Propose algorithm is based made cluster header for mobile sensor node. It "Adv" reduced the waste of energy which mobile sensor node is unnecessary. Respects clustering where is efficient according to hop count of sensor node made dynamic cluster. To extend a network life time of 2.4 times to decrease average energy consuming of sensor node. Also maintains dynamic cluster to optimize the within hop count cluster, the average energy specific consumption of node decreased 14%.

  • PDF

A Multidimensional Nested-Attribute Indexing for Queries on Nested Objects (중포된 객체에 대한 질의처리를 위한 다차원 중포 속성 색인기법)

  • 이종학;대구효
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.352-354
    • /
    • 1999
  • 본 논문에서는 객체지향 데이터베이스의 중포된 객체에 대한 질의처리를 효율적으로 지원하기 위한 다차원 중포 속성 색인기법을 제안한다. 중포된 객체에 대한 기존의 색인기법들은 일차원 색인구조를 이용함으로써 중포된 객체의 속성과 클래스 계층이 포함된 다양한 형태의 질의들에 대한 처리를 효율적으로 지원하지 못하는 문제점을 가지고 있다. 다차원 중포 속성 색인기법에서는 다차원 파일구조를 이용하여 중포 속성의 킷값 도메인과 함께 중포 속성을 표현하는 경로상의 모든 속성에 대해 각 속성이 정의된 클래스 계층마다 클래스 식별자 도메인을 할당함으로써, 다차원 도메인 공간상에서 색인 엔트리들의 클러스터링을 다른다. 따라서, 다차원 중포속성 색인기법에서는 기존의 색인기법에서 지원하기 어려운 질의의 대상 범위가 클래스 계층상의 임의의 클래스들로 제한되거나, 질의에 포함된 복합 속성들의 도메인이 클래스 계층상의 임의의 클래스들로 제한되는 경우에도 효율적으로 지원할 수 있다.

  • PDF

Query Optimization for Keyword Search on Relational Data Stream (관계형 데이터 스트림에서 키워드 검색을 위한 질의 최적화)

  • Jin-Ho Hwang;Hak Soo Kim;Jhong-Jin Kim;Seung Mi Lee;Jin Hyun Son
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.360-363
    • /
    • 2008
  • 최근 관계형 데이터 스트림에서 키워드 검색에 관한 연구가 진행되고 있다. 키워드 검색을 통해 사용자는 시스템의 복잡한 내부 데이터 스키마나 질의언어에 대한 지식이 없이도 데이터 스트림에서 정보 검색이 가능하다. 하지만, 빈번하고 동적으로 변화하는 특성을 지닌 데이터 스트림에서 수행되는 연속 질의 처리를 위해서 보다 효과적인 질의 최적화 방안이 요구된다. 따라서, 우리는 본 논문을 통해 계층적 클러스터링을 이용하여 중간결과 공유의 최대화를 통한 질의 최적화를 방안을 제안한다.

A Method for Precision Improvement Based on Core Query Clusters and Term Proximity (핵심질의 클러스터와 단어 근접도를 이용한 문서 검색 정확률 향상 기법)

  • Jang, Kye-Hun;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.399-404
    • /
    • 2010
  • In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.

An Efficient Clustering Based Image Retrieval using Color and Shape features (색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법)

  • 이근섭;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

Research Trends of Clustering Methods for Extracting Knowledge in Large Database (대규모 데이터베이스에서의 지식정보 추출을 위한 클러스터링 기법 연구동향)

  • Moon, B.J.;Jung, H.S.;Lee, D.I
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.6 s.60
    • /
    • pp.31-37
    • /
    • 1999
  • 정보검색시스템에서는 방대한 양의 데이터에서 보다 효율적이고, 보다 정확한 데이터를 어떻게 추출할 것인가가 항상 가장 중요한 문제로 인식되어 왔다. 특히, 앞으로 데이터베이스는 지식정보를 담는 대규모 데이터베이스가 되므로 이러한 문제를 해결하기 위한 방법은 갈수록 복잡해 질 것이다. 현재 이의 해법으로 데이터마이닝에 대한 연구가 활발하게 진전되고 있으며, 특히 문서의 연관관계를 정의해 주는 클러스터링은 향후 지식발견의 가장 중요한 요소가 될 것으로 보인다. 따라서, 본 논문은 대규모 데이터베이스에서 지식정보 발견에 관한 기법에 대한 최근의 연구동향을 소개한다. 즉, 이용자 질의에 대한 검색 결과를 개선하기 위한 방편인 데이터마이닝 기법의 기본개념과 데이터마이닝 기법 중에서도 최근 가장 빠르게 실용화가 이루어지고 있는 클러스터링에 대한 최근의 동향을 살펴본다.