• Title/Summary/Keyword: 질의응답시스템

Search Result 438, Processing Time 0.026 seconds

Question Analysis based Syntactic Information in Korean Question Answering System (한국어 질의응답시스템에서 구문정보에 기반한 질의분석)

  • 신승은;서영훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.931-933
    • /
    • 2004
  • 본 논문에서는 한국어 질의응답시스템에서 정확한 정답추출을 위한 구문 정보에 기반한 질의분석을 제안한다. 질의분석은 세부 정답 유형 결정, 세분화된 키워드 추출을 통해 정확한 정답추출을 목적으로 한다. 술어 유형 정보를 이용하여 대분류 수준의 정답 유형으로 질의분석을 수행하고. 구문 구조 정보를 이용하여 중요 키워드와 일반 키워드를 추출한다 마지막으로 정답 유형 자질 명사를 이용하여 세부 정답 유형을 결정한다. 실험을 통해 세부 정답 유형 결정에서 정확률 59%, 세분화된 키워드 추출에서 정확을 66%를 보였다.

  • PDF

Semi-Supervised Answer Type Classification For Question-Answering System (질의 응답 시스템을 위한 반교사 기반의 정답 유형 분류)

  • Park, Seonyeong;Lee, Donghyeon;Kim, Yonghee;Ryu, Seonghan;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.45-49
    • /
    • 2013
  • 기존 연구에서는 질의 응답 시스템에서 정답 유형을 분류하기 위해 패턴 매칭 방식이나 교사 학습(Supervised Learning)을 이용했다. 패턴 매칭 방식은 질의 분석을 통해 수동으로 패턴을 구축해야 한다. 교사 학습에서는 훈련 데이터 전체에 정답 유형이 태깅(Tagging)되어야 하며, 이를 위해서는 사용자의 질의에 정답 유형을 수동으로 태깅하는 작업이 많이 필요하다. 웹을 통해 정답 유형이 태깅되지 않은 대용량의 사용자 질의 말뭉치를 구할 수 있지만, 이 데이터에는 정답 유형이 태깅되어 있지 않다. 따라서, 대용량의 사용자 질의에 비례하여, 정답 유형을 수동으로 태깅하는 작업량이 증가한다. 앞서 언급한 두 가지 방법론에서, 정답 유형 분류를 위해 수작업이 많이 필요하다는 문제점을 해결하고자 본 논문에서는 일부 태깅된 훈련 데이터를 필요로 하는 반교사 학습(Semi-supervised Learning)에 기반한 정답 유형 분류를 제안한다. 이는 정답 유형 분류 작업에 필요한 노동력을 최소화함으로 대용량의 데이터를 통한 효율적 질의 응답 시스템 구축을 가능하게 한다.

  • PDF

Transfer Learning-based Multi-Modal Fusion Answer Selection Model for Video Question Answering System (비디오 질의 응답 시스템을 위한 전이 학습 기반의 멀티 모달 퓨전 정답 선택 모델)

  • Park, Gyu-Min;Park, Seung-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.548-553
    • /
    • 2021
  • 비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.

  • PDF

An Intelligent Web Service for Ontology-Based Query-Answering (온톨로지 기반의 질의-응답을 위한 지능형 웹서비스)

  • Jin, Hoon;Kim, In-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.640-642
    • /
    • 2005
  • 본 논문에서는 온톨로지 기반의 질의-응답을 위한 지능형 웹서비스에 관해 기술하고자 한다. 이 웹서비스는 질의 에이전트와 응답 에이전트 간의 OWL-QL 메시지 교환에 의해서 이루어진다. OWL-QL은 OWL 언어로 표현된 지식베이스를 이용하는 시맨틱 웹 에이전트들 간의 질의-응답 처리를 위한 정형화된 언어이며, 프로토콜이다. OWL-QL에서 응답 에이전트는 질의 에이전트로부터 주어진 질의에 대한 응답처리를 위해 자동화된 추론을 전개한다. 본 논문에서는 시스템을 구성하는 각 에이전트들의 기능과 구조에 관해 설명하고, 질의 에이전트 내에 포함된 그래픽 기반의 OWL-QL 질의 작성기의 유용성에 관해 설명한다.

  • PDF

Acquirement and Storage of Knowledge in Intelligent Character System Using Question Answering System (질의응답시스템을 활용한 지능형 케릭터 시스템에서 지식의 획득과 저장)

  • Park, Hong-Won;Lee, Ki-Ju;Lee, Su-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.124-128
    • /
    • 2002
  • 질의응답시스템을 활용한 지능형 케릭터 시스템에서는 지능형 케릭터가 사용자(게이머)의 질의에 대해 응답할 때 해당 케릭터에 특정 지식이 주어지지 않은 경우에 대비하여 해당 지식을 질의의 주체인 사용자 혹은 다른 외부변수로부터 획득하는 방법론과 획득한 지식을 지능형 케릭터의 지식구조에 저장하는 방법론에 대한 연구가 병행되어 왔다. 본 논문에서는 지능형 케릭터가 사용자가 입력한 자연어 문장으로부터 특정 지식을 획득하고 획득한 지식을 정해진 방법에 따라 지능형 케릭터가 이해할 수 있는 지식구조로 구조화하는 방법론에 대해 구체적인 예를 통해 상세하게 설명한다.

  • PDF

A study on the Construction of Annotated corpora for the Automatic Classification of Open Domain Queries (오픈도메인 질의문 자동 분류를 위한 주석 말뭉치 구축 연구)

  • Ahn, AeLim;Lee, SeoJin;Choi, DongHyun;Kim, EungGyun;Nam, JeeSun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.309-314
    • /
    • 2019
  • 본 연구는 오픈도메인 자연어 질의문 유형을 '질문 초점(Question Focus)'에 따라 분류하고, 기계학습 기반 질의문 유형 분류기의 성능 향상을 위한 주석 말뭉치 구축을 목표로 한다. 오픈도메인 질의문 분석을 통해 의문사 등의 키워드 기반 질의문 유형 분류의 한계를 설명하고, 질의문 내의 비명시적인 의미자질을 고려한 질문 초점 기반 질의문 유형 분류 기준을 정의하였다. 이 기준에 따라 구축된 112,856 문장의 주석 말뭉치를 기계학습(CNN) 기반 문장 분류 시스템의 학습 데이터로 사용하여 실험한 결과 F1-Score 97.72%성능을 보였다. 또한 이를 카카오 오픈도메인 질의응답시스템에 적용하여 질의문 확장을 위한 의미 자질로 사용하였고 그 결과 전체 시스템 성능을 1.6%p 향상시켰다.

  • PDF

A Knowledge-based Question-Answering System: With A View To Constructing A Fact Database (지식기반 (Knowledge-based) 질의응답시스템: 사실 자료 (Faet Database)구축을 중심으로)

  • 신효필
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • In this paper, I describe a knowledge-based question-answering system and significance of the system with a view to constructing a fact database. The knowledge-based system takes advantage of existing NLP-resources such as conceptual structures of ontologies along with morphotogical, syntactic and semantic analysis. The use of conceptual structures allows us to select right answers through inferences basically made by expansions of concepts. However, the work of constructing factual knowledge requires a great amount of acquisition time in large-scale applications because of the nature of human interference. This is why the procedure of acquiring factual knowledge cannot be fully automated. Apart from efficiency considerations. the knowledge-based system deserves serious consideration, I point out benefits of the system and describe the whole procedure of building the system in terms of a fact database.

  • PDF

Answer Extraction based on Named Entity in Korean Question Answering System (한국어 질의응답시스템에서 개체인식에 기반하여 대답 추출)

  • 이경순;김재호;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.184-189
    • /
    • 2000
  • 본 논문에서는 한국어 질의응답시스템에서 개체인식에 기반하여 대답을 추출하는 방법을 제안한다. 질의에 대한 문서검색을 통해 검색된 상위 문서를 대상으로 하여 대답이 들어 있을 가능성이 높은 단락을 추출한다. 질의 유형 분석을 통해 대답 유형을 파악한다. 단락에 나타나는 어휘들에 대해서 대답유형에 속하는지에 대한 개체인식을 통해서 대답을 추출한다. 질의응답 시스템의 평가를 위한 테스트컬렉션을 이용한 성능평가에서는 순위 5위까지의 대답추출에서 역순위 평균값이 개체추출에 대해서는 0.322, 50바이트 대답추출에서는 0.449, 250바이트 대답추출에서는 0.559이다. 상위 5이내에 정답을 포함할 비율은 개체추출에서는 48.90%, 50바이트 대답추출에서는 62.20%, 250바이트 대답추출에서는 68.90%을 성능을 보였다.

  • PDF

Answer Extraction based on Named Entity in Korean Question Answering System (한국어 질의응답시스템에서 개체인식에 기반한 대답 추출)

  • Lee, Kyung-Soon;Kim, Jae-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.184-189
    • /
    • 2000
  • 본 논문에서는 한국어 질의응답시스템에서 개체인식에 기반하여 대답을 추출하는 방법을 제안한다. 질의에 대해 문서검색을 통해 검색된 상위 문서를 대상으로 하여 대답이 들어 있을 가능성이 높은 단락을 추출한다. 질의 유형 분석을 통해 대답 유형을 파악한다 단락에 나타나는 어휘들에 대해서 대답유형에 속하는지에 대한 개체인식을 통해서 대답을 추출한다. 질의응답 시스템의 평가를 위한 테스트컬렉션을 이용한 성능평가에서는 순위5까지의 대답추출에서 역순위 평균값이 개체추출에 대해서는 0.322, 50바이트 대답추출에서는 0.449, 250바이트 대답추출에서는 0.559이다. 상위 5이내에 정답을 포함할 비율은 개체추출에서는48.90%, 50바이트 대답추출에서는 62.20%, 250바이트 대답추출에서는 68.90%을 성능을 보였다.

  • PDF

Question, Document, Response Validator for Question Answering System (질의 응답 시스템을 위한 질의, 문서, 답변 검증기)

  • Tae Hong Min;Jae Hong Lee;Soo Kyo In;Kiyoon Moon;Hwiyeol Jo;Kyungduk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.604-607
    • /
    • 2022
  • 본 논문은 사용자의 질의에 대한 답변을 제공하는 질의 응답 시스템에서, 제공하는 답변이 사용자의 질의에 대하여 문서에 근거하여 올바르게 대답하였는지 검증하는 QDR validator에 대해 기술한 논문이다. 본 논문의 과제는 문서에 대한 주장을 판별하는 자연어 추론(Natural Language inference, NLI)와 유사한 과제이지만, 문서(D)와 주장(R)을 포함하여 질의(Q)까지 총 3가지 종류의 입력을 받아 NLI 과제보다 난도가 높다. QDR validation 과제를 수행하기 위하여, 약 16,000 건 데이터를 생성하였으며, 다양한 입력 형식 실험 및 NLI 과제 데이터 추가 학습, 임계 값 조절 실험을 통해 최종 83.05% 우수한 성능을 기록하였다

  • PDF