• Title/Summary/Keyword: 질병 정보

Search Result 1,140, Processing Time 0.03 seconds

Health Diagnosis System of Pet Dog Using ART2 Algorithm (ART2 알고리즘을 이용한 애견 진단 시스템)

  • Jung, Jae-Sung;Jun, Bong-Gi;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.377-382
    • /
    • 2007
  • 본 논문에서는 애견 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 자신의 애견 건강상태를 파악 할 수 있는 진단 시스템을 제안한다. 제안된 진단 시스템은 105가지 질병과 각 질병의 증상을 데이터베이스에 구축하여 입력된 증상을 통해서 애견의 질병을 도출한다. 본 논문에서는 신경망의 자율 학습 방법인 ART2 알고리즘을 적용하여 질병을 클러스터링 하고 그 결과 값인 클러스터의 출력값과 연결강도를 데이터베이스에 저장한다. 각 질병의 증상과 관련된 질의 결과를 입력 벡터로 제시하여 학습된 질병 정보와 비교하여 애견의 건강 상태를 진단한다. 애견의 건강 상태를 진단하는데 있어서 질병과 증상의 정확한 정보는 매우 중요하다. 따라서 본 논문에서는 질병과 증상의 정보를 데이터베이스로 구축하고 질병과 증상 정보를 효율적으로 관리할 수 있도록 하였다. 제안된 진단 시스템을 구현하여 수의학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 애견 질병의 보조 진단 시스템으로서의 가능성을 확인하였다.

  • PDF

A Study on the Disease Prevention Monitoring System Using IoMT Environment (IoMT 환경을 이용한 질병 예방 모니터링 시스템에 관한 연구)

  • Sung-Ho, Sim
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2023
  • Recently, viral infectious diseases and new diseases are not limited to one region, but are spreading worldwide, causing serious economic and social damage. In addition, the development cycle of new diseases is shortening, and the rate of spread is accelerating. In order to prevent the spread of disease, passive forms of response after a disease outbreak, such as personal and regional quarantine and border closure, are prioritized. This type of response has many shortcomings as a fundamental response to preventing the spread of disease. Therefore, this study proposes a disease prevention monitoring system including new disease occurrence information. In this study, disease information and user information are collected through the establishment of the IoMT environment. Information collection using an agent collects and classifies data registered in the disease information server. In the IoMT environment, user data is collected, and whether the user is infected with a disease is evaluated and provided to the user. Through this study, individual disease symptom information can be provided and active countermeasures against the spread of disease can be provided.

Self Health Diagnosis Using Neural Networks (신경망을 이용한 자가 진단 시스템)

  • Park, Seong-Yeol;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.283-288
    • /
    • 2007
  • 본 논문에서는 전문적인 지식이 부족한 일반인들을 대상으로 자신의 건강 상태를 파악 할 수 있는 자가 진단 시스템을 제안한다. 제안한 시스템은 68가지 질병과 각 질병에 대한 대표 증상 데이터 베이스를 이용하여 사용자의 질병을 도출한다. 본 논문에서는 사용자가 자신의 대표증상을 입력하면 해당 증상과 관련 있는 질병만을 자율 학습 방법 신경망인 ART2 알고리즘을 적용하여 클러스터링하고 각 질병의 증상과 관련된 질의 결과를 입력 벡터로 적용하여 사용자의 건강 상태를 진단한다. 사용자의 건강 상태를 진단하는데 있어서 질병과 증상의 정확한 정보는 매우 중요하다. 따라서 데이터베이스를 이용하여 질병과 증상의 정보관리를 유용하게 할 수 있도록 하였다. 제안된 자가 진단시스템을 구현하여 간호학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 질병의 보조 진단 시스템의 도구로서의 가능성을 확인하였다.

  • PDF

Self Health Diagnosis and Learning System of Oriental Medicine Using Fuzzy ART Algorithm (퍼지 ART 알고리즘을 이용한 한방 자가 진단 및 학습 시스템)

  • Hwang, Byong-Ju;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.387-392
    • /
    • 2007
  • 본 논문에서는 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 스스로 자신의 건강 상태를 쉽게 파악하고, 조금씩 진화하는 질병 바이러스에 따른 증상의 변화를 진단할 수 있는 퍼지 ART 알고리즘을 이용한 한방 자가 진단 및 학습 시스템을 제안한다. 제안된 한방 자가 진단 및 학습 시스템은 72가지 한방 질병과 각 질병에 대한 증상을 분석하여 데이터베이스로 구축하고 구축된 데이터베이스 정보를 기반으로 퍼지 ART 알고리즘을 적용하여 사용자의 질병을 도출한다. 본 논문에서는 사용자가 자신의 대표 증상을 제시하면 해당 증상을 포함하는 질병들을 도출한다. 도출된 질병들의 세부 증상들을 사용자가 입력 벡터로 제시하면 퍼지 ART 알고리즘을 적용하여 세부 증상에 대한 질병들을 클러스터링한 후, 세부 증상에 대한 질병의 소속 정도를 제공한다. 본 논문에서 제시한 시스템을 한의학 전문의가 분석한 결과, 본 논문에서 제사한 시스템이 한방 질병의 보조 진단으로서의 가능성을 확인하였다.

  • PDF

GIS-based Database for Development of Disease Prediction Model (질병 예측 모델 개발을 위한 지리정보시스템(GIS)기반 데이터베이스 구축)

  • Jang, Wooyeong;Woo, Changwoo;Song, Harim;Shon, Ho Sun;Ryu, Keun Ho;Kim, YoungGyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.708-711
    • /
    • 2014
  • 국민소득 증가와 고령화 사회에 진입하면서 다양한 의료소비가 의료서비스산업에 영향을 미치고 있으며, 이러한 사회 구조 및 환경변화에 따라 새로운 질병에 대한 대응 또한 절실히 요구되고 있다. 질병 예측을 위한 연구는 기후변화와 질병, 건강행태와 질병, 사회적 위치와 질병 등 질병에 영향을 주는 많은 요인들이 있다. 그러나 이러한 요인들을 통합, 분석 활용하는 데는 해결해야 할 문제들이 많이 있다. '정부3.0 공공데이터 개방 정책' 을 통해 질병에 관련된 자료가 공개 되면서 본 연구에서는 2010년부터 2012년까지의 질병에 영향을 주는 공공데이터를 연도별로 통합하여 지리정보시스템(GIS)기반 데이터베이스를 구축하고 활용 할 수 있게 하였다. 향후 기후변화에 민감한 질병을 찾기 위해 해당기관의 자료를 활용하여 월별로 데이터베이스를 구축하고, 이를 기반으로 의료서비스의 활성화 및 효율성에 기여 할 수 있다.

A Design of Animal Disease Prevention Monitoring System using Zigbee (Zigbee을 이용한 동물 질병 예방 감시 시스템의 설계)

  • Jung, Hyon-Chel;Park, Myeong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.417-418
    • /
    • 2014
  • 본 논문에서는 무선 바이오센서 기반에서 동물 생체측정 정보를 이용한 질병 예방 감시 시스템을 설계하였다. 제안 시스템은 바이오센서를 이용하여 동물의 심박, 호흡수, 운동량을 측정할 수 있는 모듈을 개발하고 생체 신호를 계측하여 신호 처리된 정보를 Zigbee 무선 통신모듈을 이용하여 원격 데이터베이스에 전송하도록 설계하였다. 모니터링 시스템에서는 수집된 생체 정보의 연속적인 변화를 통하여 가축의 이상여부를 판단하고 질병 발생여부를 조기에 발견할 수 있게 가축의 상태정보를 제공한다. 본 연구결과는 향후 축산 농가의 질병 감시를 통하여 질병의 확산을 차단할 수 있는 긴급대처시스템을 구축하는데 활용 될 것이다.

  • PDF

Implementation and Application of Fish Drug Information System (어류 약물정보시스템의 구현 및 응용)

  • Kim, Hae-Ran;Park, Gae-Hwa;Cho, Hyug-Hyun;Ceong, Hee-Taek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.92-98
    • /
    • 2007
  • Database System of approved fish drug products was consisted of trade name, species, ingredients, sponsor, disease, dose forms, drug forms, indication, law and so on. Also in addition, we will develope the database system for fish disease information. So we propose to expand and practice for publishing a medical prescription and making an order of drug by Fish Disease Distinction System which is based on drug information system and disease information system.

  • PDF

Analysis of the Correlation between Fine Dust and Disease Using Big Data (빅데이터를 활용한 미세먼지와 질병 간의 상관관계 분석)

  • Nam, Kyeongyoon;Moon, Soyoung;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.368-370
    • /
    • 2022
  • WHO 산하의 국제암연구소는 2013 년부터 미세먼지를 1 급 발암 물질로 분류하고 있으며 미세먼지 노출에 대한 질병 발생의 심각성은 점점 수면 위로 드러나고 있는 추세다. 본 연구에서는 국민건강보험공단의 진료 내역 정보 데이터와 2015 년부터 2021 년까지의 미세먼지 및 초미세먼지 월 평균 농도 데이터를 이용하여 미세먼지 및 초미세먼지 농도와 순환기계와 호흡기계 질병 간의 상관 관계를 보이고, 연관성있는 질병을 찾아내었다. 이를 위해 시계열분석, 상관분석, 빈도분석을 시행하였으며 실험 결과 호흡기질환에서는 급성 부비동염, 코의 농양 등의 질병과 순환기질환에서는 상세불명의 원발성 고혈압, 폐색전증이 상관관계가 높은 질병으로 판명되었다.

Prediction of Calf Diseases using Ontology and Bayesian Network (온톨로지와 베이지안 네트워크를 활용한 송아지 질병 예측)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1898-1908
    • /
    • 2017
  • Accurately Diagnosing and managing disease in livestock can help sustainable livestock productivity and maintain human health. Maintaining the health of livestock is an important part of human health. The prediction of calf diseases is carried out by pre-processing the calf biometric data. calf information is used as information for calf birth history, calf biometric information, environmental information on housing, and disease management. It can be developed as an ontology and used as a knowledge base. The Bayesian network was used and inferred in the process of analyzing the correlations of calf diseases. Prediction of diseases based on knowledge of calf disease on calf diseases name, causes, occur timing, care and symptoms, etc., will be able to respond to accurate disease treatment and prevent other livestock from being infected in advance.

Relation Analysis of Disease and Biomarker based on Google Scholar (구글 학술 검색 기반의 질병과 바이오마커 관계 분석)

  • Oh, Byoung-Doo;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.238-241
    • /
    • 2017
  • 본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 하며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.

  • PDF