• Title/Summary/Keyword: 질병확산 모델

Search Result 24, Processing Time 0.021 seconds

The Study of Patient Prediction Models on Flu, Pneumonia and HFMD Using Big Data (빅데이터를 이용한 독감, 폐렴 및 수족구 환자수 예측 모델 연구)

  • Yu, Jong-Pil;Lee, Byung-Uk;Lee, Cha-min;Lee, Ji-Eun;Kim, Min-sung;Hwang, Jae-won
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In this study, we have developed a model for predicting the number of patients (flu, pneumonia, and outbreak) using Big Data, which has been mainly performed overseas. Existing patient number system by government adopt procedures that collects the actual number and percentage of patients from several big hospital. However, prediction model in this study was developed combing a real-time collection of disease-related words and various other climate data provided in real time. Also, prediction number of patients were counted by machine learning algorithm method. The advantage of this model is that if the epidemic spreads rapidly, the propagation rate can be grasped in real time. Also, we used a variety types of data to complement the failures in Google Flu Trends.

감염병 확산으로 인한 비대면 환경에서의 시험 감독을 위한 거버넌스 제안

  • Kim, Ji Eun;An, Seong Gyeong;Lee, Eun Ji;Kim, Hyung Jong
    • Review of KIISC
    • /
    • v.31 no.4
    • /
    • pp.67-75
    • /
    • 2021
  • 지난 2020년 전 세계적으로 코로나 19 확진자가 급증하자 세계보건기구(WHO)는 코로나 19 대유행을 선언하였다. 이러한 질병의 확산을 막는 방안으로 다양한 시험들이 비대면 시험으로 전환되면서 부정행위에 대한 우려가 있다. 또한, 이러한 상황에서 비대면 시험을 진행하고자 할 때 참조할 만한 체계가 없는 것이 현실이다. 이러한 상황을 고려하여 감염병 확산 이후로 불가피하게 진행될 비대면 환경에서의 감독 및 시험 방식에 있어 4단계의 거버넌스를 제시하고자 한다. 해당 거버넌스는 시험에서 사용되는 활용도 및 빈도수와 시험 감독 강도에 따라 4단계로 정의된다. 각 단계의 거버넌스들은 기존의 비대면 시험 방식과 코로나 19 이후의 시험 방식에 대한 비교 및 조사와 여러 시험 형식의 특성을 고려하여 제시된다. 제시된 거버넌스는 비대면 시험을 준비하고 시행하는 기관, 기업 및 학교들의 참조 모델이 될 것으로 기대하며, 비대면 시험의 "효율성"과 "공정성"을 확보하는 데에 기여할 것을 기대한다.

Diagnosis of Parkinson's Disease Using Two Types of Biomarkers and Characterization of Fiber Pathways (두 가지 유형의 바이오마커를 이용한 파킨슨병의 진단과 신경섬유 경로의 특징 분석)

  • Kang, Shintae;Lee, Wook;Park, Byungkyu;Han, Kyungsook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.421-428
    • /
    • 2014
  • Like Alzheimer's disease, Parkinson's Disease(PD) is one of the most common neurodegenerative brain disorders. PD results from the deterioration of dopaminergic neurons in the brain region called the substantia nigra. Currently there is no cure for PD, but diagnosing in its early stage is important to provide treatments for relieving the symptoms and maintaining quality of life. Unlike many diagnosis methods of PD which use a single biomarker, we developed a diagnosis method that uses both biochemical biomarkers and imaging biomarkers. Our method uses ${\alpha}$-synuclein protein levels in the cerebrospinal fluid and diffusion tensor images(DTI). It achieved an accuracy over 91.3% in the 10-fold cross validation, and the best accuracy of 72% in an independent testing, which suggests a possibility for early detection of PD. We also analyzed the characteristics of the brain fiber pathways of Parkinson's disease patients and normal elderly people.

A Semantic Diagnosis and Tracking System to Prevent the Spread of COVID-19 (COVID-19 확산 방지를 위한 시맨틱 진단 및 추적시스템)

  • Xiang, Sun Yu;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.611-616
    • /
    • 2020
  • In order to prevent the further spread of the COVID-19 virus in big cities, this paper proposes a semantic diagnosis and tracking system based on Linked Data through the cluster analysis of the infection situation in Seoul, South Korea. This paper is mainly composed of three sections, information of infected people in Seoul is collected for the cluster analysis, important infected patient attributes are extracted to establish a diagnostic model based on random forest, and a tracking system based on Linked Data is designed and implemented. Experimental results show that the accuracy of our diagnostic model is more than 80%. Moreover, our tracking system is more flexible and open than existing systems and supports semantic queries.

Estimating Economic Loss by S/W Vulnerability (S/W 취약점으로 인한 손실비용 추정)

  • Kim, Min-Jeong;Yoo, Jinho
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.31-43
    • /
    • 2014
  • These days a lot of cyber attacks are exploiting the vulnerabilities of S/W. According to the trend of vulnerabilities is announced periodically, security directions are suggested and security controls are updated with this trend. Nevertheless, cyber attacks like hacking during the year 2011 are increased by 81% compared to 2010. About 75% of these cyber attacks are exploiting the vulnerabilities of S/W itself. In this paper, we have suggested a VIR model, which is a spread model of malware infection for measuring economic loss by S/W vulnerability, by applying the SIR model which is a epidemic model. It is applied to estimate economic loss by HWP(Hangul word) S/W vulnerabilities.

Application of Data Mining Techniques To postoperative patient Condition Diagnostic Predictions (데이터마이닝 기법을 이용한 수술후 환자 진단)

  • Lee, Kyung-Young;Lee, Ju-Cheel;Park, Soon-Choel
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.43-46
    • /
    • 2001
  • 정보화를 통한 업무의 효율성 제고에 대한 인식이 폭넓게 확산돼 있다. 의료분야에서도 비교적 단순한 원무관리 시스템이나 환자의 증상이나 각종 자료 등을 기록하고 의료진간의 공유를 가능하게 하는 전자의료기록 관리시스템의 구축이 필요하다. 또한 이들 시스템을 통하여 획득한 환자의 자료를 분석하여 의료진의 환자질병진단을 지원하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 의료자료 분석에 요구되는 기법을 제시하며, 획득한 환자의 자료를 데이터마이닝 기법인 신경망 모델을 적용하여 결과를 분석한다.

  • PDF

A Study on the Prediction of Mortality Rate after Lung Cancer Diagnosis for the Elderly in their 80s and 90s Based on Deep Learning (딥러닝 기반 80대·90대 노령자 대상 폐암 진단 후 사망률 예측에 관한 연구)

  • Byun, Kyungkeun;Lee, Deoggyu;Shin, Youngtae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.452-455
    • /
    • 2022
  • 4차 산업혁명의 확산으로 의학계에서도 딥러닝 기술을 이용한 질병의 치료결과 예측 연구가 활발하다. 이와 관련, 일부 연구에서 국소적인 환자 데이터의 활용으로 인해 도출된 연구 결과의 일반화가 어려웠으며 예측률 제고를 위해 특정 딥러닝 알고리즘을 중심으로 한 실험이 추진되어 다양한 알고리즘별 예측률의 비교·분석 결과를 제시하는 연구도 미흡하였다. 이에, 건강보험심사평가원의 대규모 진료 정보와 다종의 알고리즘을 제공하는 AutoML을 이용, 사망률이 높은 80대·90대 노령자 대상 폐암 진단 후 84개월간의 사망률을 예측하는 Decision Tree 등 5개 알고리즘별 모델을 생성하고 이를 활용, 사망률의 예측 성능을 비교하고 사망률에 영향을 미치는 요인에 대한 분석 결과를 도출하였다.

Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities (실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구)

  • Wonseop Shin;Seungmin, Rho
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.3-12
    • /
    • 2023
  • In the post-COVID era, the importance of quarantine measures is greatly emphasized, and accordingly, research related to the detection of mask wearing conditions and prevention of other infectious diseases using deep learning is being conducted. However, research on the detection and tracking of visitors to cultural facilities to prevent the spread of diseases is equally important, so research on this should be conducted. In this paper, a convolutional neural network-based object detection model is trained through transfer learning using a pre-collected dataset. The weights of the trained detection model are then applied to a multi-object tracking model to monitor visitors. The visitor detection model demonstrates results with a precision of 96.3%, recall of 85.2%, and an F1-score of 90.4%. Quantitative results of the tracking model include a MOTA (Multiple Object Tracking Accuracy) of 65.6%, IDF1 (ID F1 Score) of 68.3%, and HOTA (Higher Order Tracking Accuracy) of 57.2%. Furthermore, a qualitative comparison with other multi-object tracking models showcased superior results for the model proposed in this paper. The research of this paper can be applied to the hygiene systems within cultural facilities in the post-COVID era.

  • PDF

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data (기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.328-337
    • /
    • 2021
  • Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

Antibiotics-Resistant Bacteria Infection Prediction Based on Deep Learning (딥러닝 기반 항생제 내성균 감염 예측)

  • Oh, Sung-Woo;Lee, Hankil;Shin, Ji-Yeon;Lee, Jung-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • The World Health Organization (WHO) and other government agencies aroundthe world have warned against antibiotic-resistant bacteria due to abuse of antibiotics and are strengthening their care and monitoring to prevent infection. However, it is highly necessary to develop an expeditious and accurate prediction and estimating method for preemptive measures. Because it takes several days to cultivate the infecting bacteria to identify the infection, quarantine and contact are not effective to prevent spread of infection. In this study, the disease diagnosis and antibiotic prescriptions included in Electronic Health Records were embedded through neural embedding model and matrix factorization, and deep learning based classification predictive model was proposed. The f1-score of the deep learning model increased from 0.525 to 0.617when embedding information on disease and antibiotics, which are the main causes of antibiotic resistance, added to the patient's basic information and hospital use information. And deep learning model outperformed the traditional machine hospital use information. And deep learning model outperformed the traditional machine learning models.As a result of analyzing the characteristics of antibiotic resistant patients, resistant patients were more likely to use antibiotics in J01 than nonresistant patients who were diagnosed with the same diseases and were prescribed 6.3 times more than DDD.