• 제목/요약/키워드: 질병예측

Search Result 354, Processing Time 0.035 seconds

A study of epidemic model using SEIR model (SEIR 모형을 이용한 전염병 모형 예측 연구)

  • Do, Mijin;Kim, Jongtae;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.297-307
    • /
    • 2017
  • The epidemic model is used to model the spread of disease and to control the disease. In this research, we utilize SEIR model which is one of applications the SIR model that incorporates Exposed step to the model. The SEIR model assumes that a people in the susceptible contacted infected moves to the exposed period. After staying in the period, the infectee tends to sequentially proceed to the status of infected, recovered, and removed. This type of infection can be used for research in cases where there is a latency period after infectious disease. In this research, we collected respiratory infectious disease data for the Middle East Respiratory Syndrome Coronavirus (MERSCoV). Assuming that the spread of disease follows a stochastic process rather than a deterministic one, we utilized the Poisson process for the variation of infection and applied epidemic model to the stochastic chemical reaction model. Using observed pandemic data, we estimated three parameters in the SIER model; exposed rate, transmission rate, and recovery rate. After estimating the model, we applied the fitted model to the explanation of spread disease. Additionally, we include a process for generating the Exposed trajectory during the model estimation process due to the lack of the information of exact trajectory of Exposed.

VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram (VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구)

  • Kim, Sung-Chul;Yu, Hwan-Jo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.722-729
    • /
    • 2010
  • Prediction problems are widely used in medical domains. For example, computer aided diagnosis or prognosis is a key component in a CDSS (Clinical Decision Support System). SVMs with nonlinear kernels like RBF kernels, have shown superior accuracy in prediction problems. However, they are not preferred by physicians for medical prediction problems because nonlinear SVMs are difficult to visualize, thus it is hard to provide intuitive interpretation of prediction results to physicians. Nomogram was proposed to visualize SVM classification models. However, it cannot visualize nonlinear SVM models. Localized Radial Basis Function (LRBF) was proposed which shows comparable accuracy as the RBF kernel while the LRBF kernel is easier to interpret since it can be linearly decomposed. This paper presents a new tool named VRIFA, which integrates the nomogram and LRBF kernel to provide users with an interactive visualization of nonlinear SVM models, VRIFA visualizes the internal structure of nonlinear SVM models showing the effect of each feature, the magnitude of the effect, and the change at the prediction output. VRIFA also performs nomogram-based feature selection while training a model in order to remove noise or redundant features and improve the prediction accuracy. The area under the ROC curve (AUC) can be used to evaluate the prediction result when the data set is highly imbalanced. The tool can be used by biomedical researchers for computer-aided diagnosis and risk factor analysis for diseases.

Air Pollution Risk Prediction System Utilizing Deep Learning Focused on Cardiovascular Disease

  • Lee, Jisu;Moon, Yoo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.267-275
    • /
    • 2022
  • This paper proposed a Deep Neural Network Model system utilizing Keras for predicting air pollution risk of the cardiovascular disease through the effect of each component of air on the harmful virus using past air information, with analyzing 18,000 data sets of the Seoul Open Data Plaza. By experiments, the model performed tasks with higher accuracy when using methods of sigmoid, binary_crossentropy, adam, and accuracy through 3 hidden layers with each 8 nodes, resulting in 88.92% accuracy. It is meaningful in that any respiratory disease can utilize the risk prediction system if there are data on the effects of each component of air pollution and fine dust on oil-borne diseases. It can be further developed to provide useful information to companies that produce masks and air purification products.

Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices (사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델)

  • Lee, Hyunsik;Lee, Woongjae;Jeong, Taikyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.33-45
    • /
    • 2020
  • This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.

Routes Analysis of HPAI Propagation using Sequential Pattern Mining (순차패턴 마이닝을 이용한 HPAI 확산경로 분석)

  • Xu, Zhenshun;Lee, Jeonguk;Park, Daihee;Chung, Yongwha
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.616-619
    • /
    • 2016
  • 고병원성 조류 인플루엔자는 빠른 확산과 높은 치사율로 인하여 발병 초기에 질병의 확산경로 및 확산범위를 예측한다는 것은 매우 어려운 문제이면서 동시에 반듯이 해결해야만 하는 중요한 과제이다. 본 연구에서는 공개된 법정 고병원성 조류인플루엔자의 발병데이터를 기반으로 순차패턴 마이닝을 적용하여 질병의 순차적인 확산경로 규칙을 도출한 후, 그 결과를 바탕으로 지역개념계층(location concept hierarchy)에 따른 추상화 레벨의 점진적인 조절을 통하여 지역 원도우의 확대와 축소를 적용함으로써 도시(city)레벨부터 리(street)레벨까지의 질병확산경로 그래프와 GIS기반의 질병확산경로에 대한 분석을 시도하였다.

A Study on Walking Analysis and Disease Prediction with Decision Tree (의사결정나무를 통한 걸음걸이 분석 및 질병 예측에 관한 연구)

  • Kim, Young-Jae;Yoo, Kwan-Hee;Nasridinov, Aziz
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.822-825
    • /
    • 2017
  • 본 연구는 키넥트를 통해 사람의 걸음걸이를 측정하고 의사결정트리(Decision Tree)를 통해 분석함으로써 현재의 걸음걸이를 통해 측정자의 허리 또는 무릎에서 발생할 가능성이 높은 문제 또는 질병들을 예측하고 해당결과를 측정자에게 알린다. 본 연구를 진행하며 첫 번째 단계에서는 관련 논문이나 병원 자료 결과들을 통해 판별할 속성들을 정하였다. 두 번째 단계에서는 키넥트를 통해 측정한 실제 데이터를 적용하기에 앞서 첫 번째 단계에서 정한 속성들이 측정자의 문제 또는 질병들을 판단해내는 연관 정도가 높은지 테스트 데이터를 이용하였고 의사결정나무를 통해 분석하였다. 그 결과 7개의 속성 중 6개로 약 85.7%정도의 연관이 있었다. 마지막 세 번째 단계에서는 판별식을 세우고 실제 데이터들을 쌓아나가며 69명의 측정한 데이터를 분석한 결과 6개의 속성 중 5개의 속성이 허리와 연관정도가 높았고 이는 두 번째 단계에서 나왔던 결과인 약85.7%에 가까운 약83%의 결과가 도출되었다. 이를 기반으로 시스템을 개발해 나가며 판별 정확도를 향상시키기 위해 계속 측정해 데이터를 쌓아가고 관련된 식들의 문제점을 보완하며 또한 어떤 환경에서 키넥트의 측정값의 정확도가 올라가는지 연구할 예정이다.

Prediction of Cardiovascular Diseases using Wireless Transmission of Blood Pressure Data (혈압데이터 무선전송에 의한 심혈관질환의 예측시스템 구축)

  • 김태운;고창성;송종관;김법영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.243-249
    • /
    • 2000
  • 본 연구의 목적은 휴대폰이나 무선호출기가 가진 양방향 데이터 전송기술을 활용하여 혈압자료를 주기적 혹은 수시로 송신하고 개인별로 축적된 건강관련데이터를 이용하여 혈압과 관련된 심혈관 질환을 예측하는 시스템을 개발하고자 한다. 본 시스템은 크게 5가지 모듈로 구성되어 있다. 첫째는 가정용 혈압측정기에 무선 데이터 전송 기능이 부가된 혈압측정 및 전송장비이다. 둘째는 무선데이터 송수신을 위한 데이터 전송과 관련된 시스템을 구축하는 부분이다. 셋째는 수신된 개인별 혈압 데이트를 DB화하고 이를 자동으로 검사하여 혈압 이상변동 여부를 수시로 확인하고, 필요시 본인에게 경고 메시지를 보내어서 담당의사와 상의하거나 병원에 가서 정밀진단을 받도록 사전에 건강 이상상태를 경고해 주는 조기경보시스템이다. 넷째는 의사의 전문지식과 개인별 혈압자료를 기초로 하여 인터넷 상에서 스스로 심혈관 관련 질병을 진단해 볼 수 있는 인터넷 기반 심혈관 질병 진단 시스템의 구축이다. 다섯 번째로는 이러한 모든 기능이 복합된 전체 시스템을 통합하고 각 부분을 연결하는 시스템 인터페이스 및 사용자가 아주 쉽게 사용할 수 있도록 하는 사용자 인터페이스 부분이다. 본 논문에서는 이를 위한 전체 시스템의 프레임웍을 제시하고 혈압과 의사의 전문지식에 기초한 심혈관 질병 진단 전문가 시스템에 대하여 구축하고자 한다.

  • PDF

Research on Disease Prediction and Health Supplement Recommendation Algorithm Based on KNN Algorithm (KNN 알고리즘을 기반으로 하는 질병 예측 및 건강기능식품 추천 알고리즘에 관한 연구)

  • Yong-Ju Chu
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.49-57
    • /
    • 2024
  • In this paper, we propose an algorithm that can recommend personalized health functional foods considering diseases due to the high interest in health functional foods and the development of machine learning as society enters an aging phase. By applying the KNN algorithm, we presented a foundational framework for a platform for personalized health functional food recommendations through disease analysis, matching techniques of publicly available health functional food information, and national public data. To ensure reliable matching between diseases and health functional foods, we analyzed correlations, assessed the appropriateness and accuracy of variables for enhancing the KNN algorithm, and derived improvement directions for the proposed system through the improvement of learning models and information to be disclosed in the future.

Development of epidemic model using the stochastic method (확률적 방법에 기반한 질병 확산 모형의 구축)

  • Ryu, Soorack;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.301-312
    • /
    • 2015
  • The purpose of this paper is to establish the epidemic model to explain the process of disease spread. The process of disease spread can be classified into two types: deterministic process and stochastic process. Most studies supposed that the process follows the deterministic process and established the model using the ordinary differential equation. In this article, we try to build the disease spread prediction model based on the SIR (Suspectible - Infectious - Recovered) model. we first estimated the model parameters using least squared method and applied to a deterministic model using ordinary differential equation. we also applied to a stochastic model based on Gillespie algorithm. The methods introduced in this paper are applied to the data on the number of cases of malaria every week from January 2001 to March 2003, released by Korea Centers for Disease Control and Prevention. As a result, we conclude that our model explains well the process of disease spread.

Predicting Transmembrane $\beta$-barrel membrane protein with HMM (HMM을 이용한 단백질 $\beta$-barrel 막횡단 부위 예측)

  • 안창신;유성준;박현석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.802-804
    • /
    • 2003
  • 2000년대 초 인간 지놈 프로젝트의 완성으로 새로운 포스트-지놈 시대를 맞이하여, 유전자에 대한 해독보다는 인간의 모든 대사와 질병에 직접관여 하고 있는 단백질의 구조와 기능에 대해 많은 관심과 연구가 이루어지고 있다. 특히, 특정 단백질들은 암과 같은 불치병에 직접관여 하고 있으므로 이러한 단백질들의 기능과 구조에 대한 예측 성능의 향상은 새로운 신약 개발에 큰 도움이 될 것이다. 본 논문은 기계학습(Machine Learning)의 한 분야인 HMM(Hidden Markov Model)을 이용하여 $\beta$-barrel 형태로 막횡단하는 단백질의 특성과 기능으로부터 막횡단하는 부위가 존재하는지 여부를 예측하는 프로그램을 구현했다.

  • PDF